
A Comparison of Various Network Features for
Temporal Link Prediction in Twitter

Fred Mubang
fmubang@mail.usf.edu

University of South Florida
Tampa, FL

Abstract
In this work, I describe my temporal link prediction experi-
ments with the social media platform Twitter. Specifically,
I trained various Logistic Regression models with different
combinations of network features, in order to examine which
features help the most in temporal link prediction. I find that
the edge weight time series features are the only features
required for the temporal link prediction task. Furthermore,
this edge only model was successfully able to outperform
the baseline model in 3 different performance metrics. In
this work I also performed experiments to determine the
best number of time steps to use for creating input temporal
features and I found that 2 time steps was the best for this
particular Twitter dataset. Lastly, I show results from Lo-
gistic Regression coefficient analysis in order to understand
which network features help the most with temporal link
prediction.

Keywords Network Science, Temporal Link Prediction, Twit-
ter, Binary Classification, Imbalanced Learning, Machine
Learning, Logistic Regression

ACM Reference Format:
Fred Mubang. 2018. A Comparison of Various Network Features
for Temporal Link Prediction in Twitter. In Network Science Final
Project ’20. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/1122445.1122456

1 Introduction
In the current day and age, the usage of social media has
become more prevalant than ever. There are countless num-
ber of social media sites that are widely used by people all
throughout the world. Twitter, is one of the most popular
among them. As of the time of this writing, Twitter has 330

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Network Science Final Project ’20, Dec 8, 2020, Tampa, FL
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

million monthly active users and 145 million daily active
users [1]. Due to the wide usage of social media, many re-
searchers have taken interest in further understanding the
network dynamics of Twitter. In this work specifically, I am
interested in understanding the dynamics of user interac-
tions over time. To that end, I wanted to answer 3 questions:

1. Can a Machine Learning model be trained to perform
temporal link prediction better than a PersistenceModel
baseline? The Persistence Model is the model in which
the predictions for time step 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1 are generated
by simply outputting the ground truth from time step
𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 .

2. What types of network features aid in the Twitter
temporal link prediction task?

3. How many time steps of temporal input features is
required for a model to successfully perform the tem-
poral link prediction task? I define the number of in-
put time steps as the lookback factor. Intuitively, it
means, by how many time steps does a model need
to "look back" in order to predict the link at time step
𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1?

In order to answer these questions I trained multiple Logis-
tic Regression models, each with different combinations of
network features and lookback factors. The lookback factors
ranging from 1 to 4 were used. The different types of net-
work features are as follows: Edge Weight, Child Outdegree
[2], Parent Indegree [2], Child Betweenness Centrality [3],
Child Page Rank [4], Child Closeness Centrality [3], Parent
Betweenness Centrality [3],Parent Page Rank [4], and Parent
Closeness Centrality [3].
In my experiments, I found that the edge weight feature

type was the only feature required in order to successfully
outperform the Persistence Baseline. Its AUC, Micro F1, and
Macro F1 scores were 0.6106, 0.9253, and 0.552 respectively,
while the baseline’s scores were 0.5799, 0.8178, and 0.549.
Furthermore, I found that a lookback factor of 2 was the best
lookback factor out of the 4 that I tried. The granularity of
time steps was daily, so this means, that for this particular
Twitter dataset, in order to predict whether an edge exists at
𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1, you only need the edge weight values from time
step 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1 − 1 and 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1 − 2 as features. Further
in this work I will explain these experiments and results in
more detail. The contributions of this paper are as follows:

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Network Science Final Project ’20, Dec 8, 2020, Tampa, FL Trovato and Tobin, et al.

1. I trained multiple models with different combinations
of network features and lookback factors and analyze
these results to show how each combination of fea-
ture types and lookback factors affect temporal link
prediction performance.

2. I show the Logistic Regression coefficients of several
models in order to illustrate the importance of each
network feature of the overall temporal link prediction
task.

2 The Temporal Link Prediction Problem
2.1 Preliminaries
Let𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 be a temporal graph.𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 can be thought
of as a sequence of static graph snapshots such that𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =

{𝐺1,𝐺2, ...𝐺𝑝𝑟𝑒𝑠𝑒𝑛𝑡 }. Each graph snapshot corresponds to the
state of 𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 some time step 𝑡 . Furthermore, each tem-
poral graph, 𝐺𝑡 can be thought of as a tuple of sets, (𝑉𝑡 , 𝐸𝑡),
in which 𝑉𝑡 and 𝐸𝑡 are sets containing the nodes and edges,
respectively, that are active in 𝐺𝑡 . Using this information, I
further define a global tuple of nodes and edges, called 𝑉 , 𝐸.
𝑉 contains every node,𝑢 ∈ 𝑉 , across each graph in𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ,
and 𝐸 contains every edge, 𝑒 ∈ 𝐸 across each in graph in
𝐺𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 .

In Twitter, the nodes and edges correspond to users and
user interactions, respectively. In this work, I define a user
interaction is defined as the act of some user A retweeting
some user B. If the user interaction is a self loop, that means
that user A is either replying to his own tweet, or user A is
posting a tweet.

The edge set 𝐸𝑡 contains tuples of the form:

𝑒𝑡 = (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡 ,𝑤𝑡 (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡)) .

𝑢𝑐ℎ𝑖𝑙𝑑 and𝑢𝑝𝑎𝑟𝑒𝑛𝑡 are the child and parent nodes, respectively.
In Twitter, 𝑢𝑐ℎ𝑖𝑙𝑑 is the user who is performing some action
in response to some post made by 𝑢𝑝𝑎𝑟𝑒𝑛𝑡 .𝑤𝑡 (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡)
represents the number of times𝑢𝑐ℎ𝑖𝑙𝑑 interacted with𝑢𝑝𝑎𝑟𝑒𝑛𝑡 .
For example, if 𝑢𝑐ℎ𝑖𝑙𝑑 retweeted 3 posts made by 𝑢𝑝𝑎𝑟𝑒𝑛𝑡 at
time step 𝑡 , then𝑤𝑡 (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡) = 3.

2.2 Defining the Temporal Link Prediction Problem
Using this definition of a temporal graph, I can now define the
temporal link prediction problem which is as follows. Let us
say you are given a feature vector, 𝑥 (𝑒, 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡). This
vector contains temporal features related to some edge 𝑒 , that
span from some initial time step, 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙 up to the present time
step, 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 . Predict whether or not edge 𝑒 will be active
at future time step 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 1. In other words, predict if
𝑤𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡) ≥ 1 or 𝑤𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 (𝑢𝑐ℎ𝑖𝑙𝑑 , 𝑢𝑝𝑎𝑟𝑒𝑛𝑡) = 0.
Figure 1 is a diagram of the temporal link prediction pipeline.
Temporal features related to an edge 𝑒 are fed into a Machine
Learning model. The model then predicts 1 if the edge 𝑒 will
be active at time step 𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡+1, and 0 otherwise.

3 Background and Related Work
3.1 Temporal Link Prediction
There have been several previous works related to the tem-
poral link prediction task. Some approaches, in a similar
fashion to this work, utilize binary machine learning algo-
rithms along with hand-crafted features in order to predict
the links. For example. the authors of [5] use the momentum
effect, homophily effect, and the common factor effect net-
work statistics in order to build a logistic regression model
for temporal link prediction in the social media platform,
Sina Weibo.
Some other approaches utilize graph embedding using

neural networks in order to perform temporal link predic-
tion. The authors of [6] introduced tNodeEmbed, which is
an embedding algorithm based on the static-network-based
node2vec algorithm [7]. The authors of [8] introduced dyn-
graph2vec, which utilizes an LSTM autoencoder in order to
embed nodes for link prediction.

3.2 Centrality Metrics
In this work, I utilize several network centrality metrics for
the link prediction task. They are as follows

1. The node indegree and outdegree: These metrics cap-
ture how many incoming and outcoming edges a node
has, respectively, [2].

2. Betweenness Centrality: This metric captures how
many times a particular node is in the shortest path
between two other nodes [3].

3. Closeness Centrality: This metric is the reciprocal of
the sum of length of the shortest paths between the
node and all other nodes in the graph [3]. Nodes that
tend to be "closer" to all other nodes will have a higher
value.

4. Page Rank: This metric measures how influential node
is on a given network [4].

4 Data Information and Preprocessing
As previously mentioned, I used a Twitter dataset for my
experiments. The tweets are related to China’s OBOR (One
Belt One Road) Initiative. The tweets span from April 10
to June 29, 2020. The time step granularity I used for my
experiments was daily, so there were 81 total time steps. In
order to avoid dealing with noisy data, I removed all nodes
that were active in less than 10 time steps in the entire dataset.
I was mainly interested in viewing the activity of the more
active edges. I used Networkx [9] and Pandas [10] to create
the temporal graph snapshots.

After this initial preprocessing step, the dataset contained
3,680 unique nodes, 7,067 static edges, and 31,728 temporal
edges. Note that there are more temporal edges than static
edges because an edge, 𝑒 , can appear in multiple time steps.
For example, if static edge, 𝑒 appears in time steps 𝑡1, 𝑡2, and

A Comparison of Various Network Features for Temporal Link Prediction in Twitter Network Science Final Project ’20, Dec 8, 2020, Tampa, FL

Figure 1. The pipeline for a temporal link prediction. Temporal features related to an edge, 𝑒 are fed into a Machine Learning
model.

𝑡3, there is 1 static edge (𝑒), but 3 temporal edges, 𝑒𝑡1 ,𝑒𝑡2 , and
𝑒𝑡3 .

5 Feature and Lookback Methodology
5.1 Feature Types
As previously mentioned, the different types of network
features are as follows:

1. Edge Weight
2. Child Outdegree [2]
3. Parent Indegree [2]
4. Child Betweenness Centrality [3]
5. Child Page Rank [4]
6. Child Closeness Centrality [3]
7. Parent Betweenness Centrality [3]
8. Parent Page Rank [4]
9. Parent Closeness Centrality [3]

Different combinations of these feature types were used in
order to construct feature type sets. Table 1 contains each
category used. The intuition for each category is explained
here.

1. E: This feature set contains the edge weight feature
type only. I created this set to see if the edge weight
history is all you need in order to predict if an edge
will be active at a future time step or not.

2. All: This feature type set includes all 9 of the feature
types.

3. No-E: This feature set contains the 9 feature types ex-
cept the edge weight feature type. Note that the edge
weight feature type is the feature type that is most cor-
related with the output value. Since the prediction task
is to predict whether an edge will be active in a future
time step, it stands to reason that the most relevant
feature type would be the edge weight. I removed this
feature type in this set to see if the model could still
perform decently well using other network features
besides this most relevant one.

4. EOI: This feature set just contains the edge weight,
child outdegree, and parent indegree histories. I wanted

to see if these 3 main feature types were all you need
because intuitively, these 3 features are the most re-
lated to the prediction task.

5. No-EOI: This feature type set contains 6 feature feature
types. It contains all the feature types minus the edge
weight features (E), the child outdegree features (O),
and the parent indegree features (I). The reason for
creating this set was to see if a model could predict the
future of an edge without features that more explicitly
"show" the history of a given edge.

5.2 Use of Different Lookback Factors
In addition to different feature sets, I also wanted to see how
many previous time steps of history were necessary in order
for a model to properly predict the future of an edge weight.
To that end, I tried 4 different lookback factors: 1, 2, 3, and 4.

5.3 Use of Multiple Datasets
Since there were 5 different feature sets, and 4 different look-
back factors tried, I ended up training 20 different models,
each with its own dataset.

6 Train and Test Methodology
6.1 Train and Test Splits
After creating the 20 data sets, the next step was to split each
data set into train and test subsets. As previously mentioned,
the train prediction period spanned from April 10 to June 15
2020 (67 time steps) and the test period spanned June 16 to
June 29 2020 (14 days).

There were 74,580 training samples and 89,636 test sam-
ples. Since the task was a binary prediction task, I let class 1
represent a temporal edge sample that is active in the next
time step, and I let class 0 represent a temporal edge sample
that is not active in the next time step. In the training set,
class 0 had 49,720 samples and class 1 had 24,860 samples.
In order to avoid an imbalanced learning issue, I created 2
negative (class 0) samples for every positive (class 1) sample.
That is why the ratio of positive to negative samples is 1:2.
For the test set, the number of class 0 samples was 82,768 and

Network Science Final Project ’20, Dec 8, 2020, Tampa, FL Trovato and Tobin, et al.

Feature
Type
Category

Feature Types Used Number of
Categories

EOI Edge Weight, Child Outdegree, Parent Indegree 3
E Edge Weight 1

No-EOI Child Betweenness Centrality, Child Page Rank, Child Closeness Centrality,
Parent Betweenness Centrality, Parent Page Rank, Parent Closeness Centrality 6

All
Edge Weight, Child Indegree, Child Betweenness Centrality,
Child Page Rank, Child Closeness Centrality, Parent Outdegree,
Parent Betweenness Centrality, Parent Page Rank, Parent Closeness Centrality

9

No-E
Child Indegree, Child Betweenness Centrality, Child Page Rank,
Child Closeness Centrality, Parent Outdegree, Parent Betweenness Centrality,
Parent Page Rank, Parent Closeness Centrality

8

Table 1. The feature type categories used in the link prediction experiments.

the number of class 1 samples was 6,868. No sampling was
used for the test set. For data processing, I used Networkx
[9], Pandas [10], and Numpy [11] to create the train/test sets.
Furthermore, I used Scikit [12] for MinMax scaling and for
the Logistic Regression algorithm.

6.2 Model and Metrics Used
Each of the 20 datasets was trained and tested with the Logis-
tic Regression model, which is a common model for binary
classification tasks. Performance was measured using the
AUC, Micro F1, and Macro F1 metrics, which are common
metrics for binary classification tasks.

6.3 F1 score
Let𝑇𝑃 be the number of true positives. Let 𝐹𝑃 be the number
of true positives, and let 𝐹𝑁 be the number of false negatives.
Using this information, we can derive the F1 score as follows
[13]:

𝐹1 = 2 ∗ 𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
.
In this work we obtained both the Micro and Macro F1

scores. The Micro F1 score can be obtained by treating class
1 as the positive class, and class 0 as the negative class, and
then plugging the true positives, false negatives, and false
positives into the above formula [12]. The Macro F1 score
involves calculating two F1 scores - the F1 score if class 0
is the positive class, and then the F1 score if class 1 is the
positive class. These two scores are then averaged without
weighting [12].

6.4 AUC Score
The AUC score provides an aggregate measure of perfor-
mance across all classification thresholds in the ROC curve.
Intuitively, this metric measures the following: What is the
probability that a given model ranks a random positive sam-
ple more highly than a random negative sample. In other

words, the AUC metric is more concerned with the relative
separation of positive samples from negative samples.

7 Results and Discussion
7.1 Classification Results
Table 2 shows the results for each of the 20 Logistic Regres-
sion models. The Ft. Category column shows which feature
set was used, and the LB column shows which lookback fac-
tor was used. TheModel Tag column shows the name of each
model.

As one can see in the table, the LR-EOI-2 and LR-E-2 mod-
els performed the best. The LR-EOI-2 model had AUC, Micro
F1, and Macro F1 scores of 0.6172, 0.9252, and 0.5496, respec-
tively. The LR-E-2 model had scores of 0.6106, 0.9253, and
0.552.
The LR-EOI-2 model had the highest AUC of 0.6172 and

the LR-E-2 model had the best Micro and Micro F1 scores of
0.9253 and 0.552 respectively. The LR-EOI-2 was the model
that was trained with only the (1) edge weight, (2) child out-
degree, and (3) parent indegree features. The LR-E-2 model
was the model trained with only edge weight features.

Overall, the LR-E-2 was the best model because although
it had a lower AUC than the LR-EOI-2 model, it performed
better in terms of Micro F1 and Macro F1. Furthermore, LR-
E-2 also managed to outperform the Persistence Baseline (the
shifted) model. The Persistence Baseline’s scores were 0.5799,
0.8178, and 0.5489.
From the results I make the observation that the only

features needed for edge classification are the edge weight
features. Adding the child outdegree and parent indegree
features only increased the AUC slightly, and it made the Mi-
cro F1 and Macro F1 decrease slightly. So, the main takeaway
from this work is that, for this particular Twitter dataset
at least, the only relevant feature type in determining the
future of an edge is the edge’s weight history. Secondly, I
note that a lookback factor of 2 yielded the best results. This
shows that that the best edge classification results can be

A Comparison of Various Network Features for Temporal Link Prediction in Twitter Network Science Final Project ’20, Dec 8, 2020, Tampa, FL

Logistic Regression Results
Model Tag Ft. Category LB AUC Micro F1 Macro F1
LR-EOI-2 EOI 2 0.6172 0.9252 0.5496
LR-E-2 E 2 0.6106 0.9253 0.552
LR-E-4 E 4 0.5864 0.9249 0.5199
LR-E-1 E 1 0.5864 0.9249 0.5199
LR-E-3 E 3 0.5864 0.9249 0.5199
LR-EOI-3 EOI 3 0.5861 0.9244 0.5248
LR-EOI-4 EOI 4 0.586 0.9248 0.523
LR-EOI-1 EOI 1 0.5859 0.9249 0.5229
Persistence_Baseline n/a n/a 0.5799 0.8178 0.5489
LR-all-2 all 2 0.5743 0.9176 0.5373
LR-all-2 No-EOI 2 0.5662 0.904 0.5071
LR-No-EOI-2 No-E 2 0.5558 0.9119 0.4991
LR-No-E-4 No-EOI 4 0.5441 0.9041 0.5059
LR-No-EOI-3 No-EOI 3 0.5424 0.9041 0.5059
LR-No-EOI-1 No-EOI 1 0.5411 0.9041 0.5055
LR-No-EOI-3 all 3 0.5365 0.9184 0.5214
LR-all-4 all 4 0.5361 0.9136 0.5239
LR-all-1 all 1 0.5352 0.9135 0.5193
LR-all-3 No-E 3 0.5265 0.9122 0.4969
LR-No-E-4 No-E 4 0.5248 0.9122 0.4963
LR-No-E-1 No-E 1 0.5223 0.9122 0.4957

Table 2. The Logistic Regression model results for each feature set and lookback factor combination.

obtained only using the past 2 time steps of edge history.
The granularity of time steps used in these experiments was
daily, so in other words, the past 2 days of edge history are
all that is need for the temporal link prediction task.

7.2 Coefficient Analysis
In order to understand the role of each feature in the edge
prediction task, I chose 2 models to analyze their coefficients.
Model 1 is the LR-EOI-2 model. This is the model that was
trained on the edge weight, outdegree, and parent indegree
feature types. Model 2 is the LR-No-EOI-2 model. This is the
Logistic Regression model that was trained on all 9 feature
types except the edge weight, child outdegree, and parent
indegree. It is the opposite of the LR-EOI-2 model. I chose this
model to see what features helped with the link prediction
task if there are no features directly related to the edge output
value.

Table 3 shows the feature importances of the LR-EOI-2
model. The ft column shows each feature. The "ts" prefix tag
in each feature refers to the time step for that particular fea-
ture. For example the feature ts_2_cur_edge_weight feature
refers to the edge weight feature in time step 2.

The coeff column shows the raw value of the Logistic Re-
gression coefficient. The normed importance column shows

the value of each coefficient normalized from 0 to 1. Val-
ues closer to 1 indicate more importance relative to other
features. Lower values closer to 0 indicate less importance.
As one can see in table 3, the most importance features

are the edge weight features. The time step 2 edge weight
feature had an importnace of 0.5, and the time step 1 edge
weight had an importance of 0.42. This makes sense, because
if the goal is to classify the edge at time step 3, it is reasonable
to assume that the edge weight at time step 2 would be the
most important feature, followed by the edge weight at time
step 1. The more recent the an edge weight feature is, the
more important it will be in classifying the future of the edge
of interest.

The child and parent degree features had very low impor-
tances, closer to 0. This shows that the degree features are
relatively less important in comparison to the edge weight
features for the temporal link prediction task for this partic-
ular model.

The LR-No-EOI-2 model had no edge weight, indegree, or
outdegree features, so it had to rely on other features instead
for the link prediction task. In this model, the child page
rank features were the most important features. The time
step 1 child page rank had an importance of 0.25, and the
time step 2 page rank feature had an importance of 0.2257. In
3rd place was the time step 2parent betweenness centrality

Network Science Final Project ’20, Dec 8, 2020, Tampa, FL Trovato and Tobin, et al.

LR-EOI -2 Feature Importances

ft coeff normed
importance

ts_2_cur_edge_weight 19.3534 0.5091
ts_1_cur_edge_weight 16.1477 0.4248
ts_2_user_outdegree -0.8322 0.0219
ts_1_parent_indegree -0.8086 0.0213
ts_1_user_outdegree -0.6071 0.0160
ts_2_parent_indegree 0.2630 0.0069
Table 3. LR-EOI -2 Model Feature Importances

feature, and in 4th place was the time step 1 child closeness
centrality feature.
It is surprising that the child page rank feature would be

such an important feature for edge classification. The page
rank score of a user indicates how influential a user is to a
network [4]. My intuition is that if anything, the parent page
rank feature would be more important because I imagine
that an influential parent at a particular time step would be
an indicator of a potential future edge forming involving
that parent. However, according to table 3 the parent page
rank features have importances only totaling up to 0.03, a
very low number.

It makes sense that the parent betweenness centrality is
a somewhat important feature (with 0.12 importance) . The
betweenness centrality measures how many pairs of users
a particular user acts as a "bridge" between [3]. So, if a par-
ent has a high betweenness centrality, it makes sense that
it would be active in more edges. This makes sense espe-
cially for Twitter because tweets have a cascade structure. In
cascade structures, bridge users are very important for the
dissemination of a tweet, because they can potentially cause
many other users to see a tweet.

Lastly, it also makes sense that the child closeness central-
ity would have some importance as well (0.09). The closeness
centrality measures the inverse sum of the shortest path be-
tween a user and all other users [3]. So, if a particular user is
close to many users, that user will be active in more edges.

8 Future Work and Conclusion
In this work, I discussed how I used different network fea-
tures to perform temporal link prediction. I was able to train
several models that outperformed a Persistence Baseline
model in terms of AUC, Micro F1, and Macro F1. I found
that the edge weight feature type is the only feature type
needed in order to perform the prediction task. Adding other
network features either did not help by much, or they ac-
tually decreased performance accuracy. I also found that a
lookback factor of 2 is all that’s needed in order to make
proper predictions.

I then analyzed the coefficients of several models. I found
that in the model using edge weight, child indegree, and

LR-No-EOI-2 Feature Importances

ft coeff normed
importance

ts_1_child_page_rank 4.2822 0.2508
ts_2_child_page_rank 3.8535 0.2257
ts_2_parent_b_cen 2.1410 0.1254
ts_1_child_close_cen 1.6625 0.0974
ts_2_child_b_cen -1.2692 0.0743
ts_2_child_close_cen 1.0890 0.0638
ts_2_parent_page_rank 0.9450 0.0554
ts_1_parent_b_cen -0.5265 0.0308
ts_2_parent_close_cen 0.4510 0.0264
ts_1_parent_close_cen 0.3439 0.0201
ts_1_parent_page_rank -0.3243 0.0190
ts_1_child_b_cen 0.1847 0.0108

Table 4. The feature importances of the LR-No-EOI-2 model.

parent outdegree, the edge weight features accounted for
about 92% of the model’s coefficient weights. For the model
using all features except the edge weight, indegree, and out-
degree, I found that child page rank was the most useful
feature. Future work would involve further analyzing why
the child page rank seems to be more useful than parent
page rank in the prediction task. Furthermore, I would also
try using more pair-wise features besides just edge weight,
such as Common Neighbors, as well as similarity between
the child and parent follower/followee sets. Perhaps these
features could aid with temporal link prediction better than
the centrality features that I used.

9 Acknowledgments
Thank you to DARPA, PNNL, and Leidos for providing the
Twitter and data for these experiments.

References
[1] M. IQBAL. Twitter revenue and usage statistics (2020). [Online].

Available: https://www.businessofapps.com/data/twitter-statistics/
[2] L. C. Freeman, “Centrality in social networks conceptual clarification.”

in Soc. Networks 1, 1978, p. 215–239.
[3] ——, “A set of measures of centrality based on betweenness.” in So-

ciometry, 1977, pp. 35–41.
[4] S. Brin and L. Page., “The anatomy of a large-scale hypertextual web

search engine,” pp. 30(1–7):107–117, 1998.
[5] D. H. Jing Zhou and H. Wang, “A dynamic logistic regression for

network link prediction,” p. 60, October 2016.
[6] K. R. Uriel Singer, Ido Guy, “Node embedding over temporal graphs,” in

Proceedings of the 28th International Joint Conference on AI (IJCAI-19),
August 2019.

[7] J. L. Aditya Grover, “node2vec: Scalable feature learning for networks,”
in In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July.

[8] A. C. Palash Goyal, Sujit Rokka Chhetri, “dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning,” in
Knowledge-Based Systems,Volume 187, January 2020.

https://www.businessofapps.com/data/twitter-statistics/

A Comparison of Various Network Features for Temporal Link Prediction in Twitter Network Science Final Project ’20, Dec 8, 2020, Tampa, FL

[9] J. L. Aditya Grover, “Aric a. hagberg, daniel a. schult and pieter j. swart,”
in Proceedings of the 7th Python in Science Conference, Aug 2008, pp.
11–15.

[10] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol. 445.
Austin, TX, 2010, pp. 51–56.

[11] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,

and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[13] G. K. Christen, P., “Quality and complexity measures for data linkage
and deduplication,” p. 127–151, 2007.

https://doi.org/10.1038/s41586-020-2649-2

	Abstract
	1 Introduction
	2 The Temporal Link Prediction Problem
	2.1 Preliminaries
	2.2 Defining the Temporal Link Prediction Problem

	3 Background and Related Work
	3.1 Temporal Link Prediction
	3.2 Centrality Metrics

	4 Data Information and Preprocessing
	5 Feature and Lookback Methodology
	5.1 Feature Types
	5.2 Use of Different Lookback Factors
	5.3 Use of Multiple Datasets

	6 Train and Test Methodology
	6.1 Train and Test Splits
	6.2 Model and Metrics Used
	6.3 F1 score
	6.4 AUC Score

	7 Results and Discussion
	7.1 Classification Results
	7.2 Coefficient Analysis

	8 Future Work and Conclusion
	9 Acknowledgments
	References

