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Abstract

This work is a survey of recent Artificial Intelligence driven approaches of

user-level activity prediction in the online collaborative platform, Github. This

work is motivated by the fact that Github is used by over 73 million developers,

4 million organizations, and has over 200 million code repositories. Futhermore,

84% of the Fortune 100 companies utilize Github for their software development.

By understanding how to leverage AI to predict user activity in Github, one

could potentially predict future technological trends and detect future malware

attacks. A myriad of AI-driven approaches are discussed in this work, such

as various neural network-based approaches, clustering based approaches, and

several others.

Keywords: artificial intelligence, machine learning, network science, graph

prediction

1. Introduction

In recent times, the online collaborative platform, Github was grown strongly

in popularity. As of the time of this writing, Github is used by over 73 million

developers, 4 million organizations, and has over 200 million code repositories.

Also, 84% of the Fortune 100 companies utilize Github for their software devel-
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opment [1]. As one can see, Github is a ubiquitous part of the technology all

around us.

Furthermore, in recent times, there has been increased interest in building

frameworks that can predict future user activity in Github. Since Github is

so widely used, if one could predict future user activity on this platform, such

predictions could make one aware of future technological advances, or alert one

to any potential cybersecurity threats.

Many of the recent Github prediction frameworks heavily utilize cutting-edge

Artificial Intelligence approaches, such as Long Short Term Neural Networks in

the cases of [2, 3], or Diffusion Recurrent Convolutional Neural Networks in the

case of [4]. With the increase in AI prediction frameworks, the task of selecting

the most appropriate one might be daunting to someone new to the field. With

all this in mind, we present this survey on recent AI approaches for Github user

prediction. Specifically, this paper makes the following contributions:

1. Recent artificial intelligence-driven frameworks within the domain of Github

user activity prediction are discussed.

2. The performance results of each framework presented are discussed.

3. Potential real-world applications are discussed for each framework.

4. Potential future work directions for each framework are discussed.

This paper is organized as follows. Section 2 contains the motivation for pre-

dicting user activity in Github. Section 3 contains the definitions for the terms

used throughout this work. Section 4 discusses the challenges of Github user

prediction. Section 5 discusses the different prediction frameworks covered in

our literature review. In Section 6 the results of each framework are discussed.

Section 7 discusses potential real-world applications. Section 8 discusses direc-

tions of future work and lastly Section 9 contains an overall summary.

2. Motivation for Predicting Github User Activity

Since Github is so widely used, if one can predict future user and repository

activity, one can gain a better understanding of technological advances. This
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information might be useful for companies trying to learn how to better service

their customers with software that is relevant to their needs. For example, if one

had a model that could predict that there would be an increase in activity on

repos related to Linux in the future, companies that use Linux-based products

could focus their efforts on improving the quality of their products, or adding

new features to them in order to attract new customers.

Furthermore, predicting Github activity can aid with cybersecurity mainte-

nance. In 2016, Black Duck’s Center for Open Source Research and Innovation

(COSRI) analyzed more than 1,000 applications that were audited as part of

merger-and-acquisition transactions [5]. The audit analysis found that 96% of

these applications contained open-source software, and more than 60% of those

applications contained known open-source security vulnerabilities [5]. If an orga-

nization could predict that repositories containing vulnerable open-source code

will receive a higher-than-normal amount of activity, that could alert an orga-

nization to the fact that their systems utilizing software from those repositories

could be the target of hackers. The organization could then take preemptive

measures to ensure any private data they have will be safe. The authors of [3]

found that software vulnerabilities are mentioned on Reddit and Twitter, and

that this information can be used to predict repository activity on Github. So, it

is possible to use data-driven models to avoid or prevent software vulnerability

exploitation.

Such foresight may have been useful to Equifax, a credit bureau, who in

2017 was the victim of a data breach in which the social security numbers of 143

million Americans were put at risk [5]. The hackers were able to attack Equifax

due to a software vulnerability in Apache Struts, an open-source framework (on

Github) for creating web applications in Java. The specific identifier for this

vulnerability is CVE-2017-5638 [5].
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3. Temporal Graph Definitions and Measurement Discussion

3.1. Temporal Graphs

The works covered in this survey predict activity in Github temporal graphs.

In Github, the temporal graph is represented as the tuple G = (U,R,E, T ). U

is the set of all users such that u ∈ U represents a user. R is the set of repos

such that r ∈ R represents a repo. The set, E can be thought of as a set of

edge tuples, each of which having the form (u, r, a, t, w). This represents the

interaction between user u and repo r. The term, a represents an action type in

Github such as a Fork or Push. The term, w represents the number of times user

u performed Github action a on repo r at some timestep t such that 1 ≤ t ≤ T .

The term, T represents the latest timestep of G.

There are various ways Github temporal graph activity can be predicted.

Most of the works covered in this review tackle the problem of predicting user-

repo links spanning from time T + 1 up to T + S, given input features up to

time T . S represents the number of desired future timesteps that one wishes to

predict.

A couple of works have slight variations on this task. The RA-DCRNN [4]

aims to only predict the number of activities a repo r has performed upon it

from T + 1 to T + S. The user-repo interactions are not of concern. In the

DeepFork paper [6], the authors aim to predict whether or not a link is created

among a given (user, repo, follower) triplet, or (u, r, fu), in which fu is a user

who follows u.

3.2. Measurement Granularities

An important point of consideration is how each prediction task is measured.

This paper classifies prediction tasks and measurements into 2 main categories,

macroscopic and microscopic levels. Firstly, there is macroscopic measurement.

This involves measuring a prediction of a high-level phenomenon. For example,

one could measure the accuracy of the predicted time series of tweets in Twitter,

or the predicted time series of new user creation in Youtube. One could also
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measure some high-level aspect of the predicted network, such as the distance

between the predicted and ground truth networks’ degree distributions.

Secondly, there is the more fine-grained microscopic measurement, that in-

volves measuring the low-level phenomenon of a network prediction, specifically

“who does what when”, or “who engages with whom when”. In the former case,

we are just concerned with what an individual does at time T +S. In the latter

case, we are concerned with (1) who did what, (2) when, and (3) with whom

(link prediction).

Note that in this work, all approaches covered involve predicting user or

user-to-user activity at some future timestep, however, not all approaches utilize

microscopic measurements. This is because for some datasets, it is not feasible

to predict microscopic measurements with reasonable accuracy.

More details regarding how each approach measures accuracy will be given

as they are described.

4. Challenges

There are various challenges involved with predicting activity on social me-

dia. One of the most obvious difficulties is that of the inherent issue of predicting

the future. This issue can further be exacerbated by the issue of noisy historical

data collection. If the historical data needed as initial conditions for temporal

prediction is noisy or incomplete, it can be difficult or even impossible to predict

future events with even some small degree of accuracy.

In [7], the authors explored the effect of data filtering on the ability to predict

activity using two different cyber attack time series data sets. They showed

that (1) the auto-correlation decreases at low sampling rates, (2) permutation

entropy increases, and (3) the error of model-based techniques increase.

Another challenge in social media prediction is that of large data. There are

can be potentially millions of users on various social media sites, so preprocessing

steps or model training times can be greatly impacted by the overwhelming

amount of data.
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Lastly, too little data can be detrimental to model training as well. In

[4], the authors noted the difficulty of predicting the time series of activity for

infrequently active user-repo pairs. The authors note that the model simply

predicted all 0’s because the user-repo pair was not frequently active.

In this work, we will discuss how various previous social media prediction

frameworks deal with these various challenges.

5. The Various Types of Github Prediction Frameworks

In this section we discuss the different approaches used for Github prediction.

While reviewing the various literature, a hierarchy of framework approaches was

observed. Figure 1 shows this hierarchy.

Firstly, we have the Model Driven vs. Model Agnostic framework categories.

The Model Agnostic category contains 2 frameworks, as shown in Figure 2.

The Model Driven category contains more subcategories. It can be further

divided into the Decompositional (Figure 3) and Non-Decompositional subcate-

gories (Figure 4). Under the Decompositional category are the Clustering-Based

and Volume-to-User subcategories (Figure 3). Under the Non-Decompositional

category are the Follower-Followee Driven, and Non-Follower-Followee Driven

approaches (Figure 4). The leaves of the hierarchy trees in Figures 2, 3, and 4

contain the different frameworks used in each category. In the following sections,

these categories and frameworks will be discussed in more detail.

Note, we define framework as the simulation pipeline that is comprised of

pipeline inputs, data pre-processing, model simulation, and pipeline output.

5.1. Model Driven vs. Model-Agnostic Frameworks

A Model-Driven approach is defined as prediction pipeline comprised of (1)

data as input, and (2) a model that performs predictions using this input data.

However, a Model-Agnostic approach is a prediction pipeline comprised of (1)

data and a model as input, as well as (2) a program that performs predictions

using both this model and data.
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Framework Type

Model Driven

Decompositional Non-Decompositional

Model 
Agnostic

Figure 1: A diagram of the overall framework hierarchy discussed in this survey.

Model 
Agnostic

FARM The Matrix

Figure 2: A diagram of the Model Agnostic approaches in this survey.

Model-Driven
Decompositional

Volume-to-User Clustering-Based

Archetype-ABM PCFMCVE-ATP SocialCubeCyber-ATP

Figure 3: A diagram of the Model-Driven, Decompositional approaches in this survey.
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Model-Driven
Non-Decompositional

Follower/Followee
Driven

Non-Follower/Followee 
Driven

RA-DCRNNDeepFork

Figure 4: A diagram of the Model-Driven, Non-Decompositional approaches in this work.

In this survey, 7 of the 9 known Github prediction approaches are Model-

Driven, and 2 of them are Model-Agnostic. These two are the FARM [8, 9, 10]

and Matrix [11] frameworks. These 2 approaches are Distributed-Computing

based. This means that they are programs made for a distributed computing

system in which there is a controller process that communicates with multiple

compute nodes. These Distributed-Computing frameworks emphasize usability

and scalability.

The FARM [8, 9, 10] framework divides the simulation task among multiple

computing nodes and uses a controller process in order to aggregate the final

results and track progress. The Github graph is split up into multiple parti-

tions using a graph partitioning algorithm and these partitions are placed into

separate nodes for efficiency. The authors of [9] and [10] used 3 sampling-based

agent models, a link prediction, and a Bayesian model with FARM and noted

that by using FARM, they cut the runtime of these algorithms by 67% on av-

erage. It took FARM 20 minutes to simulate a Github network with 3 million

users, 6 million repos, and 30 million events.

The authors of [11] introduced the Matrix Agent-Based Simulation Frame-

work. Similar to FARM, this approach also utilizes a control process node

connected to multiple computing nodes. In [11] a template is provided that a

potential Github model must follow in order for it to be properly integrated.
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The Github network is described as a discrete dynamical system S(G,K,F,W ).

G(V,E) is the Github graph with a set of nodes V and edges E. Kt ∈ K is

the array of vertex states at time t. Each state xi maps to a node vi ∈ V The

authors do not specify what is meant by state. Perhaps this is because Matrix

is supposed to be “model agnostic”. Therefore, state will be different depending

on what you want to predict. For example, the state could be a feature vector

describing a node v at time t, or in the case of a binary classification, the state

could be a simple 1 or 0 to indicate whether or not a user was active at time

t. F is an array of local functions for each node in V . Each function is used

to predict the state of node vi at time t + 1. Each node is mapped to its own

function so that Matrix can perform parallel predictions for efficiency. Lastly,

W is an update scheme function that sets the ordering for the node functions

[11].

Matrix was able to simulate 3 million users, 13 million repos, and 239 million

events in about 52 minutes [11].

5.2. Decompositional Approaches

Next, there are Decompositional prediction approaches. These include the

approaches that break the main prediction task into smaller subtasks. There

are 2 ways that the prediction tasks were decomposed in the literature. They

are the Clustering-Based and Volume-to-User based approaches.

5.3. Clustering-Based Decompositional Approaches

In the Decompositional Clustering-Based approach, user-repo pairs are pre-

dicted by first clustering the users into different categories based on 1 or more

attributes, and then using these clusters to make more informed predictions of

which user-repo pairs were active at time T + 1.

For example, the Archetype-ABM [12] is a framework that aims to predict

user-repository activity through clustering and user archetypes. In this ap-

proach, K Means clustering was used to divide users into 16 different groups

based on their average monthly activity for 14 different Github events [12].
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These clusters were known as “archetypes”. These archetypes were then used

to predict the actual users, repositories, and events at some future timestep

T + S.

Another clusering-based approach is the Proposed Community Features Model

(PCFM) [13], which is an agent-based approach that utilizes community clus-

tering to predict user-to-repo activity. Each community is defined using a topic

based approach using the profiles of the GitHub repositories in order to generate

a fixed set of communities. Some examples of topics used include programming

languages, operating systems, and profile keywords [13].

5.4. Volume-to-User Decompositional Approaches

The Volume-to-User Decompositional approaches in this work aim to predict

user-repo interactions in a two step approach. First, the overall activity time

series is predicted for a particular Github event. Then, these macroscopic ac-

tivity counts, along with user-repo pair features are sent through a 2nd module

to perform the more microscopic task of predicting user-to-repo activity over

time. The 3 frameworks that use this approach are the CVE-Action-to-Pair

(CVE-ATP) Model [3], the Cyber-Action-to-Pair (Cyber-ATP) Model [2] and

the SocialCube model as described in [14] and [15].

The CVE-ATP and Cyber-ATP frameworks are 2 variations of the Action-

to-Pair framework (ATP) [2, 3]. ATP is an LSTM neural network approach to

Github user prediction. It decomposes the prediction problem into two tasks.

Firstly, ATP predicts the daily-level volume of Github activities in the predic-

tion time period of interest. This is the Daily Level Prediction Task [2]. It uses

external features from Reddit and Twitter in order to make more accurate pre-

dictions. Then, ATP ’s predicted daily counts, along with user-repo time series

features are used to predict the number of events a user u performs on a repos-

itory r for each hour within each day of the prediction time frame of interest.

This is the Hourly User-Level Prediction Task [2]. LSTM neural networks are

used for both tasks.

The ATP framework was used to predict Github activity in two different
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datasets in two different works - [2] and [3]. With this in mind, we will refer

to this framework as two different frameworks. The ATP implementation in [3]

will be referred to as CVE-ATP because it was used to predict activity related

to repositories in the Common Vulnerabilities and Exposures database (CVE).

The data company Leidos used this database to create the CVE repo dataset.

The ATP implementation in [2] will be referred to as Cyber-ATP because it

was used to predict activity related to cybersecurity repositories. This data was

also gathered by Leidos. They mined the text of issue comments in Github and

added a repo to the cybersecurity list if the repo’s associated issue comments

contained keywords related to cybersecurity such as “security” or “bot”, etc.

The Socialcube [14, 15] model predicts user-to-repo Github activity in two

steps. First, an ARIMA model is used to predict the overall activity time series

for 10 different Github events. Then, an ARIMA model is used to predict the

activity time series of each user-repo pair.

5.5. Non-Decompositional Approaches

The Non-Decompositional approaches do not break the overall prediction

task into subtasks. Instead, they directly predict the node or edge pair activity

at time T + 1. There are 2 types, Follower-Followee Driven and Non-Follower-

Followee Driven approaches.

5.6. Follower-Followee Driven, Non-Decompositional

Approaches

In the Follower-Followee driven approach, the framework predicts user and

repo activity at time T + 1 by explicitly leveraging the relationships between a

user, u, a follower of user u, fu, and a repo, r.

The approach in this category is the DeepFork Framework [6]. It is a neural

network based approach that treats the user-repo prediction task as a binary

classification. DeepFork attempts to predict “information diffusion” among a

user, follower, and repo triplet at time T + 1. In other words, instead of pre-

dicting whether (u, r) forms a link at T +1, it predicts whether a link is formed

11



among (u, r, fu) at T +1. In this case, fu is a follower of u. This link represents

the act of user u performing an action on repo, r; follower, fu seeing this action,

and then fu also performing an action on repo r. In Github, it is possible for

fu to know u’s actions because users can follow one another.

5.7. Non-Follower-Followee-Driven, Non-Decompositional Approaches

The term Non-Follower-Followee-Driven Approach, refers to any type of

framework that does not explicitly model the dynamics between (u, r, fu) triplets.

Instead, a framework in this category directly predicts the node or edge activity

at time T + 1 using some other means.

The work in the Non-Follower-Followee category is the Repo Activity Diffu-

sion Convolution Recurrent Neural Network model, or RA-DCRNN of [4]. This

model was used to perform temporal link predictions on a Github CVE (Com-

mon Vulnerabilities and Exposures) dataset. The dataset contains information

pertaining to CVE exploits posted in cyber-security-related Github repositories.

In this work, the authors modelled the Github network as a homogenous,

undirected network, in which all nodes were repos. Note this is different from

the other works mentioned in which nodes were modelled as both users and

repos. In this particular dataset, an edge exists between two CVEs in a given

timestep t if both repos contain Github events pertaining to the same CVE

identifier [4].

The RA-DCRNN is a Diffusion Convolutional Recurrent Neural Network.

Each timestep represents the daily granularity, and the prediction task was as

follows: Given the 7-day history time series for a repo, r, predict the number of

Push Events performed on this repo over the next 7 days.

The Diffusion Convolutional Recurrent Neural Network is a recurrent neural

network that utilizes two popular neural network layers, Gated Recurrent Units

(GRU) [16] and Graph Convolutional Networks (GCNs) [17]. These types of

networks are useful for performing sequence to sequence predictions with graph

data.
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5.8. Github Data Summary

Table 1 contains prediction task and test set count-related information for

each of the different Github prediction frameworks. The What is Predicted

column shows the prediction task. The Users, Repos, and Events columns show

the number of those elements in the test set.

Table 2 contains time-related information for the test sets used for each

Github prediction framework. The #Timesteps in Testing Period column shows

the number of timesteps in each testing period. The Timestep Granularity col-

umn shows the granularity of each time step. The Prediction Period Dates col-

umn shows the timespan of prediction. Lastly, the Prediction Runtime column

shows how long it took the framework to perform the prediction. For exam-

ple, the FARM framework was tested on the period spanning from 2/1/2018

to 2/28/2018. There were 28 days in this period and predictions were at daily

granularity. Lastly, note that any value that a given paper did not report was

marked as “N.M.”, which stands for “Not Mentioned”.

6. Model Performance Results

There are many ways to evaluate success within the domain of Github ac-

tivity prediction. In this section, the various ways of doing so are discussed.

6.1. Model-Agnostic Results

The FARM framework was used to simulate the performance of 5 different

models - a Bayesian model, a link prediction model, and 3 sampling-based mod-

els [9]. These models were evaluated on how well they predicted the popularity

of the users and repositories. Rank Biased Overlap (RBO), R2, and RMSE

metrics were used. The authors of [9] noted the sampling models performed

the best. For example, for the R2 metric for measuring the event count for

issues per repository, the 3 sampling models all had R2 scores of 0.74, 0.74, and

0.75; while the Bayesian and link prediction models had scores of 0.05 and 0.58,

respectively (higher is better).
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Table 1: Table of test set prediction task and count-related information for the Github pre-

diction frameworks. N.M. stands for Not Mentioned. It means that the authors of the paper

did not state the value in the given cell.

Github Test Set Count Information

Framework
What is

Predicted
#Users #Repos #Events

FARM

[8, 9, 10]

# user-repo

activities
3 mil 6 mil 30 mil

Matrix

[11]

# user-repo

activities
3 mil 13 mil 239 mil

Archetype-ABM

[12]

# user-repo

activities
N.M. N.M. N.M.

PCFM

[13]

# user-repo

activities
N.M. N.M. N.M.

CVE-ATP

[3]

# user-repo

activities
N.M. N.M. N.M.

Cyber-ATP

[2]

# user-repo

activities
2 mil 400,000 65 mil

SocialCube

[15, 14]

# user-repo

activities
N.M. 1000 1.4 mil

DeepFork

[6]

user-repo-follower

classification
N.M. N.M. N.M.

RA-DCRNN

[4]

# of repo

activities
n/a 22,052 36,584
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Table 2: Table of test set time-related information for the Github prediction frameworks.

N.M. stands for Not Mentioned. It means that the authors of the paper did not state the

value in the given cell.

Github Test Set Time and Date Information

Framework

#Time-

steps

in

Testing

Period

Timestep

Granu-

larity

Prediction

(Test)

Period

Dates

Prediction

Runtime

FARM

[8, 9, 10]
28 daily

2/1/2018 to

2/28/2018
20 min

Matrix

[11]
14 daily N.M. 52 min

Archetype-ABM

[12]
N.M. N.M. N.M. N.M.

PCFM

[13]
N.M. weekly N.M. N.M.

CVE-ATP

[3]
744 hourly

8/1/2017 to

8/31/2017
N.M.

Cyber-ATP

[2]
744 hourly

8/1/2017 to

8/31/2017
3 hours

SocialCube

[15, 14]
31 daily

7/1/2015 to

7/31/2015
6 hours

DeepFork

[6]
1 monthly

1/1/2017 to

2/1/2017
N.M.

RA-DCRNN

[4]
237 daily

8/7/2017 to

3/31/2018
N.M.
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The Matrix framework was not evaluated on accuracy metrics, but was in-

stead evaluated on runtime performance under multiple conditions. They found

that runtime decreased approximately linearly with the addition of more CPU

cores. Furthermore, they found that runtime performance increased approxi-

mately linearly with the addition of more users. The smallest number of users

Matrix simulated was 300,000, and that took about 6.6 minutes. The largest

number of users simulated was 3 million, which took about 52 minutes.

6.2. Volume-to-User Results

For the CVE-ATP model, the authors measured the distribution of Fork and

Watch events across Github repositories [3]. They noted that both distributions

of events were close to the ground truth distributions. The JS divergence scores

for Forks and Watches were 0.0029 and 0.0020, respectively (lower is better).

For the R2 metric, the scores were 0.6300 and 0.6067, respectively [3].

In the Cyber-ATP model in [2], the authors used a myriad of measurements

and metrics to measure how well the overall simulated pattern of user-to-repo

Github activity matched that of the ground truth. The model performed par-

ticularly well at predicting Repo activity disparity for Fork events. This is a

measure of how well the simulated and ground truth Fork event distributions

match up, and it was measured with Absolute Difference. The Cyber-ATP

model’s absolute difference was around 1, while the baseline “shifted” model’s

absolute difference was much higher, at 4.

SocialCube predicted the Github PushEvent, PullRequest, and ForkEvent

31-day time series using ARIMA [14]. SocialCube then used these initial predic-

tions to perform the more fine-grained task of predicting the “affinity rates” of

all the user-repo pairs. The affinity rate is the rate (between 0 and 1) at which

a user u interacts with a repo r within the overall 31-day prediction period. The

authors of [14] used Absolute Error to measure the ground truth affinity rates

with the predicted affinity rates. They found that SocialCube strongly outper-

formed the baseline “Stationary” model, which was constructed by shifting the

past 31 days of affinity rates into the next 31 days. The Socialcube model had
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a smaller absolute error than the baseline model for 78.6% of the users. The

baseline model had smaller absolute error for only 21.4% of users.

6.3. Clustering-Based Results

The Archetype-ABM model was used to predict which repo a user would

engage with. The authors of [12] used a parameter, σ to control the number

of candidate repos that Archetype-ABM could choose from when predicting a

repo for a particular user. In their experiments, the authors tested with various

values of σ ranging from 1 to 32 [12].

The performance of Archetype-ABM was evaluated by measuring, with the

Gini Coefficient, how well (1) activities were distributed among users and (2)

how well activities were distributed among repos. They divided the activties into

3 categories: (1) Contributions, (2) Watches, and (3) Forks. Contributions are

comprised of all Github activities that are not Forks or Watches such as Pushes,

Pulls, etc. As a baseline model, the authors of [12] used a mean model, which

predicts the number of activities in the future by using the historical mean

of activities. Overall, the Archetype-ABM outperformed the baseline model.

Archetype-ABM performed particularly well at predicting the distribution of

Contribution Events over users. When σ = 32, Error of Gini coefficient for the

baseline was around 0.5, while the error for Archetype-ABM was less than 0.1.

Archetype-ABM also outperformed the baseline when predicting the distri-

bution of events over repos, albeit by not as much. When σ = 32, the baseline

had an error of around 0.125 while Archetype-ABM had an error of around 0.1.

The Proposed Community Features Model (PCFM) [13] measured perfor-

mance on a wide variety of metrics that fell into 4 different resolutions: (1)

user (2) content (repo), (3) community (a subset of users), and (4) population

(the entire Github network). The metrics used were (1) RMSE, (2) KS-test, (3)

JS-Divergence, (4) Absolute Difference, and (5) Rank-Biased Overlap (RBO).

PCFM was then compared with 3 other baseline models. One overall metric

score was calculated for each model by normalizing all metric results between

0 and 1 by measurement group and metric type. This final score was called
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the “normalized metric error” [13]. PCFM was found to have the lowest error

scores out of the 4 models. For example, for the “user” category PCFM model

had a normalized metric error of around 0.2, while the best baseline had an

error of around 0.4.

6.4. Follower/Followee Driven Results

The one Github model that performed a classification task was the DeepFork

model [6]. Recall the prediction task was to predict whether a followee-follower-

repo triplet would be active at future timestep T+1. DeepFork outperformed its

baselines, with an average F1 score around 70%. Perhaps the reason it achieved

this somewhat high score is due to the setup of the prediction task. The authors

used time T as the training period and it ranged from August 1 2016 to Dec 31

2016 (5 months). The granularity of T +1 (the test period) was 1 entire month

(Jan 1 2017 to Feb 1 2017). So, the task was for DeepFork to predict if a triplet

would be active anytime within an entire month. Perhaps if T +1 was a smaller

granualrity (such as 1 day), the accuracy may have been much lower.

6.5. Non-Follower/Followee Driven Results

Recall that for the RA-DCRNN model [4], the authors predicted sequences

of repo-to-repo adjacency matrices over 7-day periods. They used RMSE and

MAE of each graph instance to measure success. In order to alleviate the data

sparsity issue of repo time series, they clustered repos according to different

characteristics. However, they found that with fewer clusters of repo nodes, the

metric performance became worse. For example, the repo partition with the

fewest nodes had an MAE and RMSE of 6.37 and 29.92, respectively. However,

the partition with the largest number of clusters of nodes, had an MAE and

RMSE of 1.41 and 7.07, respectively. However, the authors do note that the

model trained on the smaller number of clusters dataset was best at predicting

spikes in the time series. The problem was that these predicted spikes did not

perfectly line up with the ground truth time series. So, perhaps different metrics

could have been used to account for this fact [4].

18



7. Real World Applications

In this section we discuss how each of the prediction frameworks could be

applied to real-world scenarios.

7.1. Github Framework Real World Applications

There are various practical applications for the Github frameworks depend-

ing on the goal of the end user. As mentioned earlier, perhaps the user may be

interested in what technologies would become popular in the near future. To

that end, it may be useful to use a framework that predicts the popularity of

a repo over time. The RA-DCRNN [4] obviously meets that goal, because it

directly predicts the activities performed upon various repos over time. Most

of the approaches that predict user-to-repo pairs would be useful as well, one

would of course just simply ignore the final user predictions made by these mod-

els and simply pay attention to the repo predictions. The Archetype-ABM [18]

may be less useful in this case because the authors noted that while it does

predict user-repo pairs, it performs much better at predicting users and much

worse at predicting repos. Furthermore, the DeepFork [6] model may be of less

interest as well, because it performs a binary classification (0 or 1) with ”0”

meaning a repo will be acted upon by a user and 1 otherwise. So, it does not

contain any information about the popularity of a repo. Therefore, the models

that would be of interest for repo popularity prediction would be the CVE-ATP

[3], Cyber-ATP [2], SocialCube [15], PCFM [13], and RA-DCRNN [4] models.

The other use of Github prediction frameworks would of course be to detect

a cyber attack or exploit of a software vulnerability before it occurs. To that

end, it would be useful to predict either future (1) user activity, (2) repo ac-

tivity, or (3) user-repo activity. In that case, all the Model-Driven approaches

would be appropriate. Models that predict all 3 may be preferable because one

could monitor 2 scenarios: (1) tracking a user or group of users whose activity

is usually correlated with malicious events or (2) tracking the increased amount

of activity on repos known to contain software vulnerabilities or associated with
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cyber attacks. The CVE-ATP, Cyber-ATP, SocialCube,Archetype-ABM and

PCFM models would be useful for obtaining these 3 pieces of information be-

cause these models predict user-repo pairs. The RA-DCRNN model could be

useful, but it only captures repo popularity.

DeepFork [6] predicts user-follower-repo triplets as a binary classification. It

may not be useful if the volume of activities is desired, however, something that

it does that the other models do not is track not only the user who performs an

activity on a repo, but it also predicts if a follower of that user will also perform

an acitivty upon a repo, which could be a powerful tool if one wanted to predict

the influence of different users upon each other.

With some potential adjustments, theModel-Agnostic approaches, FARM [9]

and the Matrix [11] could be used in conjunction with any of the Model-Driven

approaches if scalability becomes an issue.

8. Future Work

The direction of future work depends greatly on the framework of interest.

In this section, we discuss the different possibilities of future work in detail.

Generally, all approaches have room to improve their accuracy.

8.1. Model Agnostic Future Work

In [8], the creators of the FARM Architecture note that further runtime

improvements could be made to FARM if clusters of users that share a similar

or identical attributes could be found. If such users could be identified, then

the representation of these users could be compressed so that the simulations

are more memory efficient.

The authors of the Matrix [11] note that an outstanding issue with the

approach is evaluation of the trade-off between model fidelity and accuracy

of models. Future work with the Matrix model would involve more ways of

understanding this tradeoff and perhaps even mitigating it.
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8.2. Model-Driven - Volume to-User Future Work

A limitation of the ATP models in [2] and [3] is that they can only predict

activity of user-to-repo pairs that have occurred in the past. Future work for

these models would involve resolving this issue.

The SocialCube [15] model does predict new users, so instead, for future work

explorations, the authors discuss performance optimization as well as exploring

the use of other user-prediction models.

8.3. Model-Driven - Clustering Based Future Work

The authors of the PCFM model [13] note that the main weakness of their

approach is that it does not provide an explanation for the users’ behavior nor

does it capture peer to peer influence. Perhaps future improvements to this

model could involve analysis into the types of users being predicted, and a

mechanism that captures peer to peer influence.

In [18], the creators of the Archetype-ABM model note that their model

scores well on the user-prediction tasks, but less well on the repo-prediction

tasks. This is perhaps due to the fact that the Archetype-ABM creates archetypes

based on users and not on repos. So, for future work, the authors propose an

approach that also creates repo-archetypes as well to improve repo-prediction.

8.4. Model-Driven - Non-Decompositional Future Work

The creators of DeepFork [6] found much success in using hand-crafted topo-

logical and node features to predict user-follower-repo triplets. Future work for

this type of model could involve further analysis of why certain topological and

node features worked for the model, and if they give any insights into the dy-

namics of user-follower-repo triplets.

The authors of the RA-DCRNN [4] model was able to outperform other

baseline models in the task of predicting repo activities, but the authors noted

that the model still struggled to predict future activity for lowly-active users.

Future work in this area could involve creating a DCRNN architecture that

specializes in sparse activity prediction.
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9. Conclusion

In this review we discussed recent Artificial Intelligence-driven Github user-

level prediction approaches. We discussed how within the realm of Github,

the main approaches can be divided into the Model Agnostic and Model-Driven

categories. Within the Model-Driven approaches, the different types discussed

were Volume-to-User, Clustering-Based, Follower/Followee Driven, and Non-

Follower/ Followee Driven.

We also discussed the challenges of social media prediction, such as scal-

ability, noisy or uncertain data, and sparse data. Furthermore, we discussed

how these different approaches performed, possible real-world applications, and

potential directions for future work.

This review can be used to guide researchers who are interested in creating

AI-driven user-level prediction frameworks. Although we focused on Github

prediction, one should note that the ideas presented in these works are appli-

cable (with perhaps some modifications) to other temporal network prediction

domains, such as those found in more typical kinds of social media networks.
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