
A Survey of Current Embedding Techniques and
Applications

1st Maxat Alibayev
Computer Science and Engineering

University of South Florida
Tampa, United States

2nd Fred Mubang
Computer Science and Engineering

University of South Florida
Tampa, United States

Abstract—Data embedding has become an increasingly popular
technique to aid in the processing of unstructured data. By
mapping data to a lower dimensional space, one can perform
various machine learning tasks with much greater ease, such as
image and video segmentation, recommendation system building,
and semantic search, among many other tasks. However, there
is a considerable amount of literature to parse through when
trying to decide the most relevant embedding approach for one’s
problem. This can be daunting for new researchers to the field, so
we attempt to address this issue through this survey paper. In this
paper, we describe recent approaches in embedding techniques
and applications. The domains covered are as follows: (1) Graph
Embedding, (2) Cross Modal Embedding, (3) Embedding for
Segmentation, and (4) Embedding within the context of Zero-
Shot Learning.

Index Terms—Embedding, Representation Learning, Segmen-
tation, Graph Theory, Zero-Shot Learning, Cross-Modal Re-
trieval

I. INTRODUCTION

One of the most common issues in Machine Learning
is figuring out how to properly wrangle large amounts of
unstructured data when creating models. Embedding data into
a lower dimensional space seems to aid greatly in alleviating
this issue. Embedding can be described as the translation of
high dimensional data into a lower dimensional form. Some,
but not all applications of embedding include natural language
processing, image and video captioning, recommendation sys-
tem building, semantic search, social network analysis, and
drug discovery.

This paper is a survey paper of several recent breakthroughs
within the field of embedding. Specifically, this paper focuses
on the fields of graph embedding and embedding in computer
vision. The contributions of this paper are as follows:

1) A general overview of several popular embedding do-
mains are given. Basic concepts and definitions are de-
scribed for those new to the field.

2) The state-of-the art algorithms within each embedding
domain are described, which is useful for any researcher
desiring a succinct summary of recent approaches.

3) The similarities and differences between the different
embedding approaches are discussed, which allows the
reader to know any tradeoffs or benefits that come with
using one type of algorithm over another.

This paper’s format is as follows. Section II will cover
Graph Embedding Techniques and Approaches. This section

will define the graph embedding problem, establish basic
definitions, and discuss applications. There will be 4 different
types of graph embedding domains discussed: (1) graph em-
bedding for recommendation systems, (2) graph embedding
for knowledge graphs, (3) dynamic graph embedding, and
(4) the importance of leveraging proximity information when
embedding nodes in a graph.

Section III will focus on the applications embedding in
computer vision problems, such as cross-modal retrieval (5
papers), video/image segmentation (3 papers), and zero-shot
learning (2 papers). We will discuss how these algorithms
incorporate the embedding concepts into their frameworks, as
well as their similarities and differences.

II. GRAPH EMBEDDING

A graph is a mathematical structure used to model the
relationships between objects. It can be represented as a set
G = (V,E). V is the set of nodes in G, and E is the set of
edges in G. The number of nodes is n = |V |. A single node
can be represented as vi, such that i ≤ n. An edge can be
represented as a tuple of form (vi, vj) in which i ≤ n and
j ≤ n.

Graph Embedding is the representation of a graph in a lower
dimensional space. It is useful because most adjacency matrix
representations of graphs suffer from sparsity. In this section,
some current graph embedding techniques and applications
are discussed. We also discuss potential future research ideas
within this domain.

A. A Formal Definition of Graph Embedding

The objective of graph embedding is follows. Given a graph,
G with n vertices, and a predefined dimensionality, d < n,
we must convert G into a d-dimensional space. d is usually
much smaller than n. The embedding of G into a smaller
dimensional space is done to achieve a dense representation of
the original graph. Figure 1 from Hu et al. shows an example
of embedding a graph into a 2-dimensional space [1].

B. Additional Concepts and Definitions

Before discussing the different graph embedding ap-
proaches, we present some basic definitions.

1) Homogeneous vs. Heterogeneous Graphs: A homoge-
neous graph is a graph in which there is only 1 type of

1



A B

Figure 2: A, Graph structure of the Zachary Karate Club social network, where nodes are connected if the corresponding
individuals are friends. The nodes are colored according to the different communities that exist in the network. B, Two-
dimensional visualization of node embeddings generated from this graph using the DeepWalk method (Section 2.2.2) [47].
The distances between nodes in the embedding space reflect similarity in the original graph, and the node embeddings are
spatially clustered according to the different color-coded communities. Reprinted with permission from [47, 49].

parate lines of research that have drawn significant attention across different subfields and venues in recent
years—e.g., node embedding methods, which are a popular object of study in the data mining community, and
graph convolutional networks, which have drawn considerable attention in major machine learning venues. In
doing so, we develop a unified conceptual framework for describing the various approaches and emphasize
major conceptual distinctions.

We focus our review on recent approaches that have garnered significant attention in the machine learning
and data mining communities, especially methods that are scalable to massive graphs (e.g., millions of nodes)
and inspired by advancements in deep learning. Of course, there are other lines of closely related and relevant
work, which we do not review in detail here—including latent space models of social networks [33], embedding
methods for statistical relational learning [43], manifold learning algorithms [38], and geometric deep learning
[7]—all of which involve representation learning with graph-structured data. We refer the reader to [33], [43],
[38], and [7] for comprehensive overviews of these areas.

1.1 Notation and essential assumptions

We will assume that the primary input to our representation learning algorithm is an undirected graph G = (V, E)
with associated binary adjacency matrix A.2 We also assume that the methods can make use of a real-valued
matrix of node attributes X 2 Rm⇥|V| (e.g., representing text or metadata associated with nodes). The goal is to
use the information contained in A and X to map each node, or a subgraph, to a vector z 2 Rd, where d << |V|.

Most of the methods we review will optimize this mapping in an unsupervised manner, making use of only
information in A and X, without knowledge of a particular downstream machine learning task. However, we will
also discuss some approaches for supervised representation learning, where the models make use of classification
or regression labels in order to optimize the embeddings. These classification labels may be associated with
individual nodes or entire subgraphs and are the prediction targets for downstream machine learning tasks (e.g.,
they might label protein roles, or the therapeutic properties of a molecule, based on its graph representation).

2Most of the methods we review are easily generalized to work with weighted or directed graphs, and we will explicitly describe how
to generalize certain methods to the multi-modal setting (i.e., differing node and edge types).

3

Figure 1. An example of a graph embedding from Hamilton et al. [1]. The
network used is the Karate Network, a popular small graph dataset. In (A),
we have our initial, unstructured graph. In (B), we have its embedding. In
this case, the number of dimensions, d, is equal to 2, but more dimensions
can be used.

node and 1 type of edge. For example, in [2], Hu et al.
describe their experiments in an item-item graph in which
the 1 type of node is an item, and the 1 type of edge is an
(item, item) edge. In a heterogeneous graph, there can be
more than type of node or edge. For example, in [3], Ruan
et al. use an herb-symptom graph, in which there are two
different node types: herbs and symptoms. There are also
different edge types: (herb, symptom), (herb, herb), and
(symptom, symptom).

2) Static vs. Dynamic Graphs: As previously mentioned, a
graph is simply a structure used to model the relationships
between objects. This basic type of graph can be consid-
ered “static” because there is no temporal information en-
coded into this modelling. However, a dynamic graph is a
structure used to model the relationships between objects
over time. So, it can be represented as a set, Gtemporal
which is comprised of graph snapshots, Gt1, Gt2, ...GtT ,
at T different time steps, t1 < ... < tT . The SPE [2],
HS2Vec [3], WWV-KG [4], and NECS [5] algorithms in
this paper are all static graph algorithms. tNodeEmbed
[6] and DynGAN [7] are dynamic graph algorithms.

3) Adjacency Matrix: An adjacency matrix is one type of
way to represent a graph. If n is the number of nodes
in a graph, an adjacency matrix A, would be a matrix
of size n x n. Each entry, vij in an adjacency matrix
indicates whether an edge is formed between nodes vi and
vj . Typically 1 is used to indicate they are connected, and
0 is used to indicate they are not. Additionally, a weight
may be applied to these values as well to indicate the
relative “strength” of the edge.

4) Proximity: Proximity refers to the similarity of two
nodes. Formally, proximity(vi, vj) = sij = s(vi, vj),
in which vi and vj are nodes, and s is a similarity
function. Different pieces of literature describe proximity
in different ways. We take our definition from [1], [2],
and [5].

5) First Order Proximity: This is the weight of the edge
between two nodes vi and vj . One can use a Facebook
network graph as an example to illustrate this concept.
Assume the nodes are users and assume that the edges
represent whether or not a user vi messaged user vj . The
first order proximity could represent how many times user
vi messaged user vj [5]..

6) Second Order Proximity: Second Order Proximity refers
to the similarity between the neighborhoods of two nodes
vi and vj [5].

7) Higher (Kth-Order) Proximity: There are various def-
initions of k higher order proximity depending on the
literature, but in this paper we will use this term to refer
to the k-hop transition probability between two nodes vi
and vj . In other words if one were to perform a random
walk on the graph G, what is the probability of reaching
node vj from vi in k or less hops? We take our definition
of higher order proximity from [5].

C. Link Prediction

In this section we will discuss both static and dynamic
link prediction. These are two common tasks that are highly
prevalent in the graph embedding papers discussed in this
survey, as well as in the field in general.

1) Static Link Prediction This is a common task for static
graph prediction models. The input to the model is a
graph in which some edges are missing or removed.
A successful link prediction model must be able to
predict the values of the missing edges given the present
edges. An application of this task in the real world is
item recommendation. In this setting, the edges would
represent whether a particular user would buy a particular
item, in which case the edge would take on the form (user,
item). Alternatively, the edge could represent whether
someone who bought item A would also buy item B
(item, item). Figure [8] shows an example of static link
prediction within the domain of user-item recommenda-
tion. The SPE [2], HS2Vec [3], WWV-KG [4], and NECS
[5] algorithms in this paper can be used for static link
prediction.

2) Dynamic Link Prediction In this setting, the model must
predict whether an edge between two nodes will exist at
some point in the future. Figure 3 from [9] shows an
example of dynamic link prediction. For example, in the
image, in timestep Gt, edge (2, 3) does not exist, but in
timestep Gt+1, it does. An application of dynamic link
prediction would be predicting which users will interact
with each other on a social media platform, or predicting
whether two proteins will interact in a protein-protein
interaction network (PPI). tNodeEmbed [6] and DynGAN
[7] can be used for dynamic link prediction.

D. Embedding for Recommendation Systems

In this section we will discuss graph embedding techniques
for Recommendation systems. We will discuss 2 different
algorithms: Semi-Parametric Embedding (SPE) [2] and and
HS2Vec [3].

1) Recommendation Algorithm #1: Semi-Parametric Em-
bedding: The SPE model was made for item to item recom-
mendation (I2IR). I2IR is the field of study that is concerned
with how to recommend items to a user given their purchasing
history [2]. An example of I2I recommendation is Amazon’s
“Customers Also Purchased” feature on their website. One

2



Figure 2. A real-world static link prediction example. Given the partially
completed matrix of user-item ratings, we must predict whether or not a user
should be recommended a particular item. Source: [8].

1

GC-LSTM: Graph Convolution Embedded LSTM
for Dynamic Link Prediction

Jinyin Chen, Xuanheng Xu, Yangyang Wu, Haibin Zheng

Abstract—Dynamic link prediction is a research hot in complex networks area, especially for its wide applications in biology, social
network, economy and industry. Compared with static link prediction, dynamic one is much more difficult since network structure evolves
over time. Currently most researches focus on static link prediction which cannot achieve expected performance in dynamic network.
Aiming at low AUC, high Error Rate, add/remove link prediction difficulty, we propose GC-LSTM, a Graph Convolution Network (GC)
embedded Long Short Term Memory network (LTSM), for end-to-end dynamic link prediction. To the best of our knowledge, it is the first
time that GCN embedded LSTM is put forward for link prediction of dynamic networks. GCN in this new deep model is capable of node
structure learning of network snapshot for each time slide, while LSTM is responsible for temporal feature learning for network snapshot.
Besides, current dynamic link prediction method can only handle removed links, GC-LSTM can predict both added or removed link at the
same time. Extensive experiments are carried out to testify its performance in aspects of prediction accuracy, Error Rate, add/remove
link prediction and key link prediction. The results prove that GC-LSTM outperforms current state-of-art method.

Index Terms—Link prediction, Dynamic network, GCN, LSTM, Network Embedding

F

1 INTRODUCTION

DYNAMIC link prediction in complex network has wide
applications, such as social network [1], economy [2],

biology [3], and industry [4] etc. Most networks in real-
world are dynamic network, whose structure evolves over
time [5], [6]. Dynamic network has dynamic pattern, whose
nodes or links added and removed over time.

Dynamic link prediction [7], [8] is defined to predict
future network structure based on historic network infor-
mation. It is an efficient feature learning tool for complex
networks. Recently, dynamic link prediction has applied to
various real-world networks [9], [10]. For instance, in social
network, we predict people’s relationship like who will be
whose friend in near future [11]. In communication network,
we predict the future network structure [12], and in scien-
tific network, we study the cooperation of researchers to
predict their future co-workers [13]. Besides, dynamic link
prediction can help locating the criminal and predicting
activity time in social security network [14]. The dynamic
pattern of infectious disease transmission is discovered by
dynamic link prediction [15]. Protein mutual influence in
biological networks is predicted by dynamic link predic-
tion [16] as well.

For better understanding how dynamic network evolves
over time, Fig. 1 shows a simple illustration. We take G
as a social network, in which each node represents a user
and each link represents the friendship between two users.
The solid black line indicates the link that originally existes,
the black dotted line indicates the link that disappears at a
certain moment, the solid red line indicates the new link that

• J. Chen, X. X, Y. Wu and H Zheng are with the College of Information
Engineering, Zhejiang University of Technology, Hangzhou 310023,
China

E-mail: {chenjinyin, 2111603112, 2111603080,
201303080231}@zjut.edu.cn

1 2

3 4

0

6

5

1 2

3 4

0

6

5

1 2

3 4

0

6

5
tG 1tG � +t TG

Fig. 1: An evolve pattern illustration of social network.

occurs at a certain moment, and the blue dotted line indi-
cates the link that reappears. At time t, two red nodes(User 0
and User 1) have the similar structures, they both have three
friends(the blue node), but they don’t know each other. The
static link prediction method will consider these two subnet-
works evolve to the same potential structure, but in fact their
evolution patterns are quite different. At time t+1, User 1
will introduce User 2 to one of his friends, User 3. As time
passed by, the friends of User 1 gradually become friends of
each other. However, the friends of User 0 are not connected
to each other, and he may be more willing to maintain his
friendship. We can conclude that although User 0 and User 1
have the same network structure at first, their different
evolution models reflect different social strategies. These
differences are realistic reflection of their social needs, such
as whether to develop relationships between others or not.
Therefore, in the dynamic link prediction task, how to learn
the different evolution modes of each node is particularly
important.

The dynamic link prediction problem can be more
complex, such as prediction of newly added or removed
links [17]. Recently a number of methods have been pro-
posed to predict the potential or future links in dynamic net-
works [14]–[18]. Most dynamic link prediction methods take
advantage of historic network information and compact

ar
X

iv
:1

81
2.

04
20

6v
1 

 [c
s.S

I]
  1

1 
D

ec
 2

01
8

Figure 3. An example of dynamic link prediction. In timestep Gt, edge (2,
3) does not exist, but in timestep Gt+1, it does. Source: [9].

of the main issues of the I2I field is figuring out the best
methodology for recommending items to a user. There are 2
approaches.

Firstly, there is the behavior-based approach which makes
the assumption that similar users will prefer similar items. In
other words, if Stan likes a movie, X, the recommendation
system will look at the movie history of other users who
viewed movie X and will recommend Stan a movie based
on those users’ history.

Secondly, there is the content-based approach, which as-
sumes that similar items will be preferred by similar users. For
example, if Stan likes a movie, X, the recommendation system
will solely recommend a movie to Stan based on the features
of that movie. So, if he saw a movie about cars, the algorithm
will try to find other movies about cars that Stan would like.
A content-based model does not take into consideration what
other users liked.

The SPE algorithm seeks to combine both the behavior-
based and content-based recommendation methdologies into
1 model [2]. Specifically, it takes as input both an item-item
co-occurrence matrix, R, the item feature (content) matrix,
C, and a statistics matrix B. To evaluate the effectivess of
SPE, the authors used a similarity score to compare the results
of SPE to real-life item-item co-occurrences. A successful
recommendation algorithm should be able to give a high
ranking to similar items and a low ranking to less similar
items. The similarity score the authors used is the following:

s(vi, vj) =
1

1 + e−v
T
i vj

(1)

Vectors vi and vj are the embedding vector for two items.
The sigmoid function is used to keep the similarity score
between 0 and 1.

2) Recommendation Algorithm #2 HS2Vec for Herb-
Symptom Graphs: : The authors of [3] created an embedding
algorithm for an herb-symptom co-occurrence graph. The
application of these embeddings would be for regularities
analysis and herb recommendation in the context of Traditional
Chinese Medicine. An algorithm that utilized this embedded
herb-symptom graph would be addressing the following prob-
lem: Given a list of symptoms, what would be the best herbs
to use for treatment?

The steps of this algorithm are as follows:

1) First, an herb-symptom co-occurrence matrix is created
from prescription data. There is an edge between an herb
and a symptom if they co-occur in the same prescription.
There is an edge between two herbs if they can address
the same symptom, and there is an edge between two
symptoms if they can be treated by the same herb. This
concept of connecting two nodes by their association with
another node is known as meta-path based proximity.

2) This resulting matrix, T is the Traditional Chinese
Medicine Network (TCMN). It is sent through an au-
toencoder that has the following objective: to embed the
matrix to the lower dimension so that 1st and 2nd order
proximity is maintained throughout each node embed-
ding. In other words, if two herbs treat similar symptoms,
then their embeddings should be similar to one another.

3) The autoencoder has now successfully created an em-
bedding space for the TCMN network. These embedding
vectors can be used for a variety of downstream tasks
such as clustering and link prediction.
Figure 4 shows the architecture of HS2Vec.

3) HSVec and SPE: How Are They Similar?: SPE [2]
and HSVec [3] are similar in the following ways. They are
both embedding approaches with use cases cases within the
field of recommendation. SPE is used for embedding item-
item matrices for general item recommendation. As a matter
of fact, the authors used Amazon, Yelp, and Alibaba datasets
in their experiments to show its capability of operating in
such a domain. These 3 companies are well known for using
recommendation systems as part of their infrastructure.

HS2Vec can be used for recommending the best herb
treatment given a list of symptoms in Traditional Chinese
Medicine. It can also be extended to recommend the best
medications given a list of symptoms in Western Medicine.
Additionally, both approaches are similar in that they require
the calculation of co-occurrence matrices. For SPE, the co-
occurrence matrix represents how often each item is bought
or clicked by the same user. For HS2Vec, the co-occurrence
matrix represents how often certain herbs and symptoms co-
occur within the same prescription [3].

4) HSVec and SPE: How Are They Different?: The
two algorithms differ in the following ways. The item-item
matrix used in SPE is a homogeneous network. Recall that a
homogeneous network is one in which there is only one type
of node and edge [2]. In this case, the node type is only item
and the edge type is (item, item).

3



Figure 1: The framework of HS2Ve for regularities discovery in prescriptions.

where δ is the sigmoid function. Using the generalized y(k)
i ,

we can obtain the output x̄i via reversing the calculation pro-
cess of the encoder. The goal of the autoencoder is to play a
mini-game that minimizes the reconstruction error of the out-
put and the input. In addition, some nodes contain a small
number of edges in HCMN, which results in the sparsity dis-
aster of HCMN. That is because the number of zero elements
of the adjacency matrix T is much more than that of non-
zeroin elements, which may degrade the performance of re-
construction. The autoencoder component would be inclined
to reconstruct more zero elements to output x̄i. Therefore,
the weighted Binary Cross Entropy as loss function is em-
ployed to impose more penalty on the reconstruction error
of the non-zero elements than zero elements. For all types
of nodes, the second-proximity objective function can be de-
fined as follows:

J1 = − 1

n

n∑

i=1

n∑

j=1

λij [xij log(x̄ij) + (1 − xij) log(1 − x̄ij)]

(5)
where λij indicates the weight coefficient of the penalty im-
posed to each elements. If xij = 0, λij = 1, else λij = ωij >
1. With the objective function J1, the latent space can main-
tain the global structures. It is not only necessary to preserve
the global network structure, but also essential to capture the
local structure [Huang and Mamoulis, 2017]. The first-order
proximity is the general approach to preserve the local struc-
ture. However, because the multi-types of nodes and edges
have their own special characteristics, we utilize PRM prox-
imity to capture the local information, which can learn unique
latent spaces for different node and edge types. To preserve
the PRM proximity, a distinct goal is to minimize the distance
of these two probability distributions between xi and x̄i. In
our work, we use Kullback-Leibler divergence as the distance
metric. Then the objective function for this goal is defined as
follows:

J2 = −
∑

vi,vj∈V

s(vi, vj) log δ(y(k)
i · y(k)

j ) (6)

where δ is the sigmoid function. To preserve both global and
local proximity of HCMN, we jointly minimize the objective
function by training the Eq.(5) and Eq.(6) simultaneously as
follows:

J = (1 − α)J1 + αJ2 (7)

We utilize the asynchronous stochastic gradient descent
(ASGD) algorithm [Recht et al., 2011] to optimize HS2Vec.
In detail, we aim to calculate the partial differential function,
∂J/∂W̄(k) and ∂J/∂W̄(k). In addition, to address the prob-
lem that meta-path based algorithm may converge to a trivial
solution [Huang and Mamoulis, 2017], we sample multiple
negative nodes to enhance the influence of positive nodes. For
each pair of nodes with non-zero path based PRM proximity
s(vi, vj), we redefine object function J2 as follows:

J2 = − log(1 + e−y(k)
i y(k)

j ) −
m∑

1

Ev̂∈Pr(vi)[log(1 + ey(k)
i v̂)]

(8)

where m is the times of sampling, and Pr(v) is some noise
distribution of node vi.

5 Experiments
5.1 Datasets

• TRE [Wan et al., 2015]: The dataset integrates herbs,
symptoms, diseases and their correlations from the Chi-
nese TCM texts.

• TCMSP [Ru et al., 2014]: The dataset describes a phar-
macology information TCM, which includes herbs, dis-
eases, chemicals, targets and their correlations.

• TCMGeDIT [Fang et al., 2008]: The dataset provides
association information about genes, diseases, TCM ef-
fects and TCM ingredients automatically mined from
vast amount of biomedical literature.

• The clinical dataset is collected from over 70, 000 lung
cancer records, including herbs, symptoms and diseases.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3349

Figure 4. The HS2Vec architecture [3].

Contrast this with the Traditional Chinese Medicine Net-
work used in HS2 Vec, which is a heterogeneous network [3].
Recall that a heterogeneous network is one in which there is
more than 1 type of node and/or more than 1 type of edge.
In the TCMN network, there are two types of nodes, herb
and symptom. Furthermore, there are 3 types of edges: (herb,
herb), (herb, symptom), and (symptom, symptom).

The difference in corresponding graph types leads into
the next major difference between the two algorithms. Since
HS2vec takes as input a heterogeneous graph, the authors had
to use meta-path-based proximity in order to accurately cap-
ture the relationships among herbs and symptoms. To calculate
meta-path-based proximity, one must find the metapath edges.

A metapath edge is an edge created by creating a path
between two otherwise disconnected nodes. A path is found
between the two nodes by their association with 1 or more
nodes in the graph. For example, let H1 and H2 be herbs, and
let S be a symptom. If herbs H1 and H2 could be both be
used to treat symptom S, it can then be said that there is a
metapath that exists from H1 to H2 of the following form:

H1 → S → H2

Applying this methodology at scale to thousands of pre-
scriptions allows one to create a richer Traditional Chinese
Medicine Network, which in turn would allow HS2Vec to
create better node embeddings [3].

E. Embedding for Knowledge Graphs

This section introduces the concept of knowledge graphs.
They have many applications in query systems. However,
recent research has applied them to recommendation systems
as well. First, the definition of knowledge graphs will be
given, followed by a discussion of a recent knowledge graph
embedding algorithm, called the Weighted-Word Vector Model

for Knowledge Graphs (WWV-KG) [4]. The last part of this
section will discuss potential future research ideas combining
knowledge graphs with recommendation system embedding
algorithms such as HS2Vec and SPE.

1) Knowledge Graph Definition: A knowledge graph is
a representation of knowledge as a collection of facts. As
described by Veria et al. in [4], each fact is a triplet comprised
of subject, predicate, and object. More formally, a triplet,
(subject, object, predicate), would be notated as (es, rp, eo). es
and eo are nodes known as entities, and the relation, rp, would
be the type of edge that connects these two nodes together.
Note that a knowledge graph is a type of heterogeneous graph
because there are two types of nodes: subject and predicate
nodes, and there are multiple types of relation edges. An
example of a fact triplet would be (Thomas Jefferson, “Is
A Founding Father in addition to”, George Washington ).
Thomas Jefferson and George Washington are the entities, and
they are related to one another because they are both Founding
Fathers of the United States of America.

An example of a knowledge graph application would be
Google’s Knowledge Graph as described by Singhal in [10].
It is a knowledge base implemented as a knowledge graph,
and it is used by Google to enhance a user’s search results.
When a user enters a query into Google Search, on the results
page, there is an info box that appears with some information
related to the query.

2) Improving Knowledge Graphs with Text Data: As one
can see, the strength of a knowledge graph relies on its
underlying knowledge base. Without a rich collection of fact
triplets, a knowledge graph cannot be of any use. The authors
of [4] presented an unsupervised approach to improving the
collection of knowledge graph triplets using text data. The
framework is as follows.

1) The input to the framework is the full corpus of text data
being used, as well as all relations of interest from the

4



pre-existing knowledge graph.
2) This text is used to a train a Word2Vec model. Each word

in the corpus now has an associated word vector.
3) Entity vectors are then created by performing a weighted

mean among all relevant word vectors. For example, a
word vector would be considered relevant if it appeared
within the same sentence as an entity. Irrelevant word
vectors are not included in the weighted mean.

The triplets can then be mapped to an embedding space. The
loss function of this algorithm is a triplet loss, in which a lower
loss is output if the distance between the anchor embedding
and positive embedding is smaller than the distance between
the negative embedding and the anchor.

3) Using Knowledge Graphs With HS2Vec: The ideas
presented in the HS2Vec paper [3] can be applied to knowl-
edge graph generation as well. Note that the limitation of
this network is that the only information used to associate
symptoms with herbs is their co-occurrences and meta-paths.
If one were to convert the TCMN into a knowledge graph,
the types of fact triplets derived could take the following
form: (herbi, “can be used to treat symptomj”, herbk), or
(symptomi, “can both be treated by herbj”, symptomk).

However, in the real world, much more information might
be taken into account when treating a patient, such as their
medical history, genetic information, etc. Some additional
node types that could be added to the TCM Knowledge Graph
could be: patient, disease, etc. An example of a triplet fact
within this new type of knowledge graph could be: (patient,
“is allergic to” herb).

F. Dynamic Graph Embedding

Thus far, this section has mainly discussed embedding
techniques and applications for static graphs. However, many
networks in the real world are dynamic and change over time.
New edges can appear at different points in time, as shown
in Figure 3. In this section, we will discuss dynamic network
embedding techniques and applications.

1) tNodeEmbed: In [6], Singer et al. present their algo-
rithm, tNodeEmbed, a node embedding algorithm for temporal
graphs. Their goal is to find for each node v ∈ V at time
T a feature vector fT that minimizes the loss of any given
prediction tasks. The two tasks the authors focus on is node
classification and link prediction.

tNodeEmbed uses a matrix Qt, for each timestep t, that
is initialized using the popular node-embedding algorithm,
node2vec. The objective of node2vec is to embed a node so
that its entire neighborhood vector can be predicted from it.
tNodeEmbed utilizes node2vec’s initial embeddings so that it
can capture how a node’s neighborhood vector evolves over
time [6].

2) DynGAN: In [7], Maheshwari et al. present a DynGAN,
which is a dynamic graph embedding model that leverages
Generative Adversarial Networks, or GANs. GANs were first
introduced by Ian Goodfellow et al. in [11]. They are neural
network architectures each comprised of two networks, a
Generator (G), and a Discriminator (D). The goal of G is to

create samples that are similar to the training set. The goal
of D is to be able to successfully distinguish between real
examples from the training set, and fake examples from G. If
G and D are trained properly, G will be able to create samples
so similar to the training set that D cannot tell the difference.

There are 2 variations of the DynGAN model, the DynGAN
and DynGAN LSTM model. The DynGAN model is an
ensemble model comprised of a sequence of GAN models of
length t+ l. l is a look-back factor that represents how many
timesteps the GAN model should “look-back” in time when
training on the dynamic graph sequence. The DynGAN-LSTM
model has a similar setup to the DynGAN model, except it also
includes LSTM layers. The input to either DynGAN model is
a sequence of graphs of length t+ l. The output of the model
is the adjacency matrix of the graph at time t+ l+1. In other
words, the model takes in a sequence of graphs and tries to
reconstruct what the adjacency matrix would look like at time
t+ l + 1.

The objective function is as follows:

(2)

min
θG

max
θD

V (G,D)

= Ev∼ptrue(.|vc) [logD(v, vc; θD, wD)]

+ Ev∼pG(.|vc;θG,wG)
[log(1− (D(v, vc; θD, wD))]

vc is a context node. v is a neighbor of vc. θD and
wD represent the parameters and weights of D, respectively.
ptrue(.|vc) represents the node neighborhood of context node
vc and pG represents the predicted node neighborhood of the
generator, G. The objective of the generator is to predict what
a node’s neighborhood will look like at time t, while D’s
objective is to be able to distinguish whether G’s output is
correct or not.

Figure 5 shows the architecture of DynGAN-LSTM.

In this paper, we develop a graph embedding algorithm, referred to as DynGAN, to generate stable
embeddings of dynamic networks. DynGAN employs GAN at its core and leverages recurrent
neural networks to capture temporal transitions. DynGAN incrementally learns to embed for each
snapshot of the graph. We initialise embedding of next step from the previous time step and learn
gradients over it. This ensures stability of the embeddings and requires lesser time to converge after
first few iterations. We demonstrate our results on three tasks, namely, a) graph reconstruction, b)
link prediction, and c) graph prediction. We perform extensive experiments on benchmark datasets
and compare with state-of-the-art baselines. Our experiments achieve improved results on graph
reconstruction and link prediction over state-of-the-art results. We also report significant gains on
graph prediction for one dataset. Our contributions are summarised as follows:

• We propose a novel adversarial network based architecture for generating network embed-
dings for dynamic graphs.

• We construct experiments over three tasks and two large real-world datasets. Our model is
able to show significant improvement over state-of-the-art baselines on all tasks.

2 Problem Setup

Let G = (V, E) be a given undirected graph where V = v1, v2, . . . , vn is the vertex set and
E = (vi, vj) is the associated edge set such that vi, vj 2 V .

Dynamic network. A series of undirected graphs G1, G2 . . . GT where Gt = (Vt, Et) represents a
graph at time t. Our goal is to learn low-dimensional stable representation of vertices vi over time
such that temporal and structural properties of the series of graph are effectively captured. In essence,
consecutive embeddings should differ little if graph structure does not change much.

2.1 Algorithms for Dynamic Graphs

*$1 *$1 *$1 *$1

*� *� *W *W�O

$W�O��

8� 8� 8W
8UDZ

(a) Architecture for DynGAN
*$1 *$1 *$1 *$1

/670 /670 /670 /670

/670 /670 /670 /670

/670 /670 /670 /670

*� *� *W *W�O

$W�O��

(b) Architecture for DynGAN-LSTM

Figure 1

We develop two algorithms that are adversarial network based deep learning models. Both employ a
generator-discriminator model to learn embeddings for dynamic graphs. We train both generator G
and discriminator D simultaneously and expect G to learn the data distribution. Previous works have
demonstrated the effectiveness of GAN in graph networks(Wang et al. [2017b], Maheshwari et al.
[2019]). Generator captures the data distribution and learns a parameter ✓g such that G(v|vc; ✓g) can
approximate the true distribution. v and vc are the sampled vertices in the generator2. Discriminator
estimates a probability to differentiate the samples arriving from the generator and true distribution.
It learns a parameter ✓d such that D(vi, vj ; ✓d) can discriminate between the presence or absence of
an edge between vi and vj . The minimax game with objective function V (G, D) can be formalised
as min

✓G

max
✓D

V (G, D) where V (G, D) is given as

VP
c=1

⇣
Ev⇠ptrue(·|vc)

⇥
log D(v, vc; ✓D, wD)

⇤
+ Ev⇠G(·|vc;✓G,wG)

⇥
log

�
1 � D(v, vc; ✓D, wD)

�⇤⌘

2Refer to supplementary material for sampling strategy

2

Figure 5. The LSTM DynGAN architecture. The setup is similar to the
vanilla DynGAN algorithm, but now there are LSTM layers included in the
architecture.

3) DynGAN and tNodeEmbed: Similarities: DynGAN
and tNodeEmbed are similar in the following ways. They
both utilize previous time step embeddings to inform their
embeddings at the next timestep. They both can be utilized
for future link prediction, and the objective both of their loss
functions is to re-create the neighborhood of any given node.

5



4) DynGAN and tNodeEmbed: Differences: The algo-
rithms differ in some obvious ways. Firstly, DynGAN utilizes
an adversarial approach to learn the graph at the next time
step, whereas tNodeEmbed does not.

Secondly, both algorithms utilize the previous time step
embeddings to make future embeddings, they take different
approaches in doing so. In both DynGAN and DynGAN-
LSTM, the weights learned by a GAN sub-module at timestep
t−1 are used to initialize the GAN sub-module at timestep t.
However, in tNodeEmbed, the authors also utilize a technique
called matrix rotating. The intuition behind this technique is
that it will keep each node embedding similar throughout each
time step even though the node may change behavior over
time.

The tradeoff that comes with this technique is that one
can only use tNodeEmbed with networks that have the same
number of nodes every time step. In order to rotationally align
two matrices, the matrices must be of the same size. This may
not be ideal because in the real world, many dynamic graphs
increase their number of nodes over time. Take any social
network, for instance. The number of users on Facebook or
Twitter has only grown ever since the beginning of those sites.

DynGAN, on the other hand, can be used with graphs whose
nodes increase over time. As a matter of fact, for one of their
experiments, the authors used DynGAN on a dynamic graph
whose number of nodes increased over time.

The tNodeEmbed creators tested the algorithm on on the
Cora and DBLP datasets both with and without the use of
the rotation technique. Table II shows the results of this
experiment. While this experiment shows that using this
technique does improve performance, one must consider if
the improvement is worth losing the ability for accounting for
growing graphs. For example, in the table, when using the
Micro F1 metric, the performance improvement is about 2%
and for DBLP the improvement is about 4%. For the Macro
F1 metric, the improvement was 4% and 11% for Cora and
DBLP respectively. While the Macro F1 definitely shows a
considerable improvement, the Micro F1 score does not show
much improvement. So, depending on the problem and type
of metric that one is most concerned with, it may be better to
remove the matrix rotation component of tNodeEmbed if one
is working with growing graphs. Otherwise, one could only
predict the evolution of the nodes that existed in the first time
step. An interesting future experiment would be to compare
the performance of tNodeEmbed and DynGAN on graphs that
retain the same number of nodes over time. Then, one could
remove the rotation matrix component of tNodeEmbed and
compare that with DynGAN on graphs that grow in size over
time.

G. Retaining Proximity Information in Graph Embedding and
the NECS Algorithm

An important aspect of graph embedding is retaining the
proximity information of each node. Here are 2 ways to
incorporate proximity information when embedding:

Table I
TNODEEMBED NODE CLASSIFICATION PERFORMANCE BOTH WITH AND

WITHOUT THE ROTATION ALIGNMENT STEP. WHILE IT DOES MAKE A
DIFFERENCE, ONE MUST CONSIDER IF THIS DIFFERENCE WARRANTS

LOSING THE ABILITY TO PREDICT PERFORMANCE ON GROWING GRAPHS.

Dataset Micro F1 Macro F1 AUC CC
with without with without with without

Cora 0.668 0.644 0.513 0.475 0.925 0.919 0.275
DBLP 0.822 0.785 0.504 0.390 0.997 0.959 0.002

1) Define node similarity in terms of how many neighbors
two nodes have in common, and the weights between any
2 given nodes. Then, in the objective function, optimize
the embeddings for maximum similarity between similar
nodes or maximum distance between dissimilar nodes.

2) Maximize the probability that the model can re-create
the full neighborhood vector of any given node (2nd
order proximity) as well as the corresponding weights
(1st order proximity). This entails that nodes with similar
neighborhoods will have similar embeddings.

Here are some examples of how the algorithms in this paper
utilized these ideas:

1) SPE [2] performs (2) when embedding an item feature
matrix into the lower dimensional form g(c). Secondly,
when the final item embeddings are being used to recom-
mend items, SPE uses (1) because the similarity between
two item embedding vectors is calculated.

2) HS2Vec [3] utilizes a loss function that exploits both
(1) and (2). It uses an autoencoder to create a lower
dimensional embedding for an edge, (vi, vj) and its
objective is to ensure that the similarity between the
hidden layer representations of the edge and the re-
created input vectors of the edge are the same as the
original edge vector, (vi, vj).

3) tNodeEmbed [6] utilizes node2vec which in turn utilizes
(2). The objective in node2vec is to embed a node such
that one can re-create its neighborhood vector, N(v).

4) DynGAN [7] utilizes (2). The Generator attempts to re-
create a neighborhood vector, N(vc), given a context
node 1-hot vector, vc.

The last graph embedding algorithm to be discussed in
this section of the paper is called Network Embedding with
Community Structural Information (NECS) by Li et al. in [5].
This algorithm heavily utilizes node proximity information for
embedding, albeit, in a different way than the aforementioned
algorithms do.

The authors of the paper argue that most graph-embedding
approaches do not utilize high-order proximity information
for graph embeddings, so to remedy that issue, they propose
NECS [5]. The input to NECS is a high-order proximity
matrix, P, which is created from the graph adjacency matrix
A:

P = W1A + W2A
2 + ... + WlA

l (3)

In the adjacency matrix, A, the value at coordinate (i, j)
is 1 if the nodes vi and vj are connected, and 0 otherwise.

6



Table II
A TABLE OF THE DIFFERENT GRAPH EMBEDDING ALGORITHMS COVERED IN THIS SURVEY, AS WELL AS THEIR OBJECTIVES AND APPLICATIONS.

Algorithm Objective Application

Semi Parametric
Embedding [2]

Leverage both content-based and co-occurrence
based item features to embed all items
from a co-occurrence matrix.

Item-item recommendation for
consumers (e.g., Amazon, Alibaba)

HS2Vec [3]
Leverage herb-drug, herb-herb, and drug-drug
co-occurrences and metapaths to embed herbs and
drugs in a shared latent space.

Drug-herb discovery for Traditional
Chinese Medicine

Weighted-Word Vector
Algorithm
for Knowledge Graphs [4]

Calculate positive and negative fact entity triplets
of form (subject, predicate, object)
and use a triplet loss to embed the individual
entities in a shared latent space.

Knowledge base creation, search engine
creation (example: Google’s
Knowledge Graph)

DynGAN-LSTM [7]
Learn the embedding of a node’s
neighborhood vector at time t
via an adversarial approach.

Dynamic link prediction and graph
reconstruction

tNodeEmbed [6] Learn the embedding of a node at time t. Dynamic link prediction and node
classification

Network Embedding with
Community Structure [5]

Learn the static embedding of a node using
its community and structural information
in the network.

Static link prediction and node
classification.

The W matrices are the weight matrices for each adjacency
matrix. The l denotes the proximity. For example, W denotes
the weight matrix for the 2nd proximity adjacency matrix. A2

is the proximity matrix for the 2nd order proximity of A. It is
found by squaring A.

The authors incorporate high-order proximity into their
network embedding by performing a matrix factorization on
matrix P. In other words, they are trying to find to matrices
U and V such that the expression ||P - VUT ||2 is minimized.
Afterward, more matrix operations are applied to create em-
beddings for the overall “community” structure of the original
graph. The authors do this because they claim that by doing
so, they can create better node embeddings.

H. Graph Embedding: Discussion

In this section, graph embedding use cases and applications
were discussed. First, we explained basic definitions and
applications. Then, we discussed several domains of graph
embedding and some of the latest algorithms associated with
each one. For recommendation systems we discussed SPE [2]
and HS2Vec [3]. We then introduced knowledge graphs and
WWV-KG [4], an unsupervised method for improving knowl-
edge graphs with text data. For dynamic graph embedding,
tNodeEmbed [6] and DynGAN [7] were discussed. Lastly, we
discussed the importance of retaining proximity information
in graph algorithms and introduced an algorithm called NECS
[5]. Table II shows the different graph embedding algorithms
covered in this section.

This concludes the graph embedding section of the survey.
The following section will explain the approaches within the
fields of computer vision.

III. EMBEDDING IN COMPUTER VISION

The concepts of embedding are widely used in computer
vision applications. In this section, we present the application
of embedding concepts in cross-modal information retrieval,
video and image segmentation, and zero-shot learning.

A. Cross-Modal Retrieval
Word embedding models, such as Word2Vec [13], were

widely adopted in information retrieval tasks. The next logical
step was to use embedding for retrieving data in different
modalities, such as text, images, and videos. These frameworks
mostly deal with captioning visual data or retrieving visual
data using text [14]–[16]. Some works have more specific
goals, such as food recipe retrieval from food images [12] or
captioning images in different languages [17]. All these frame-
works embed the visual feature vectors and text vectors into
a shared space. The goal is to learn the embedding functions,
such that relevant visual and text embeddings are mapped
close to each other while keeping irrelevant embeddings as
far as possible. A sample structure of a cross-modal retrieval
framework is shown in Figure 6.

The first step of cross-modal retrieval frameworks is encod-
ing visual and text data into lower-dimensional feature vectors.
There are two types of visual data: images and videos. Both
can be encoded into lower-dimensional feature vectors with
convolutional neural networks. Video features can be obtained
by adding a temporal dimension to the convolution filters
or by combining visual features of individual frames. Text
data are usually encoded via recurrent neural networks, such
as LSTM, GRU, and their variations. The input data to the
network are word vectors that can be computed with widely-
used word-embedding models, such as Word2Vec or GloVe.
One framework in the literature implements a novel word-
embedding model, where it encodes the words on a character-
based level [17]. The authors represent each character as a
24-dimensional vector and a single word is represented as a
matrix. This matrix is passed through 2 fully connected layers
and returned as a word-level embedding, which is ready to be
consumed by text encoding RNN models. This kind of word-
level embedding does not require extra space for thousands
of word vectors as it depends on the number of letters in the
alphabet and the size of fully connected layers. In cross-modal
retrieval, visual and text feature vectors are further embedded

7



Learning Cross-Modal Embeddings with Adversarial Networks
for Cooking Recipes and Food Images

Wang Hao†,∗ Doyen Sahoo†,∗ Chenghao Liu† Ee-peng Lim† Steven C. H. Hoi†,‡

†Singapore Management University ‡Salesforce Research Asia
{hwang, doyens, chliu, eplim, chhoi}@smu.edu.sg

Abstract

Food computing is playing an increasingly important
role in human daily life, and has found tremendous applica-
tions in guiding human behavior towards smart food con-
sumption and healthy lifestyle. An important task under the
food-computing umbrella is retrieval, which is particularly
helpful for health related applications, where we are inter-
ested in retrieving important information about food (e.g.,
ingredients, nutrition, etc.). In this paper, we investigate an
open research task of cross-modal retrieval between cooking
recipes and food images, and propose a novel framework
Adversarial Cross-Modal Embedding (ACME) to resolve the
cross-modal retrieval task in food domains. Specifically, the
goal is to learn a common embedding feature space between
the two modalities, in which our approach consists of several
novel ideas: (i) learning by using a new triplet loss scheme
together with an effective sampling strategy, (ii) imposing
modality alignment using an adversarial learning strategy,
and (iii) imposing cross-modal translation consistency such
that the embedding of one modality is able to recover some
important information of corresponding instances in the
other modality. ACME achieves the state-of-the-art perfor-
mance on the benchmark Recipe1M dataset, validating the
efficacy of the proposed technique.

1. Introduction
With the rapid development of social networks, Internet

of Things (IoT), and smart-phones equipped with cameras,
there has been an increasing trend towards sharing food im-
ages, recipes, cooking videos and food diaries. For example,
the social media platform “All Recipes" 1 allows chefs to
share their created recipes and relevant food images. Their
followers or fans follow the cooking instructions, upload

∗denotes equal contribution
1https://www.allrecipes.com

Ingredients: sugar, 
cornstarch, buttermilk, 
baking powder, eggs, 
lemon juice 

Instructions: Combine 
sugar and cornstarch in 
a large saucepan; stir in 
UKXEDUE«

௜௠௚ܿ݊ܧ ௥௘௖ܿ݊ܧ

Retrieval
Learning

Modality 
Alignment

sugar                 garlic cloves
salt eggs     
buttermilk
baking powder

Cross-modal
Translation 
Consistency

images recipes

generated imagespredicted ingredients

Triplet Loss

Figure 1: Example of illustrating the idea of Adversarial Cross-
Model Embedding (ACME), where the embeddings of cooking
recipes and food images are aligned. These embeddings are useful
for several health applications from the perspective of understand-
ing characteristics about food, nutrition and calorie intake.

their pictures for reproducing the same dishes and share their
experiences for peer comments. As a result, the community
has access to rich, heterogeneous sources of information on
food. In recent years, food-computing [32] has become a
popular research topic due to its far-reaching impact on hu-
man life, health and well being. Analyzing food data could
support a lot of human-centric applications in medicine, biol-
ogy, gastronomy, and agronomy [32]. One of the important
tasks under the food-computing umbrella is Food Retrieval,
i.e., we are interested in retrieving relevant information about
a specific food. For example, given a food image, we are
interested in knowing its recipe, nutrition content, or calo-
rie information. In this paper, we investigate the problem
of cross-modal retrieval between cooking recipes and food
images, where our goal is to find an effective latent space to
map recipes to their corresponding food images.

The idea of cross-modal retrieval in the food domain is
to align matching pairs in a common space, so that given

11572

Figure 6. The framework of an image captioning model from [12].

into the shared embedding space. Most approaches use multi-
layer perceptrons for the embedding step.

The state-of-the-art information retrieval frameworks in-
corporate a pairwise ranking loss function, also known as
triplet loss, in their learning process. Cross-modal retrieval
frameworks are not exceptions. The canonical equation for the
pairwise ranking loss in cross-modal retrieval looks as follows:

L =
∑

i,j,k

max(γ + d(fvi , gtj )− d(fvi , gtk), 0) (4)

The fvi represents the anchor visual embedding, gtj rep-
resents positive text embedding, and gtk represents negative
text embedding. The function d(x, y) computes the distance
between two vectors. Some papers use a similarity function
instead of a distance function and put the opposite sign
in front. The second term would look identical with text
embedding being the anchor and visual embeddings being the
positive and negative instances.

It is important to mention that there are some modifications
applied to this loss function in the literature to meet specific
goals. For instance, Hao et al. adopt a hard sample mining
strategy when computing triplet loss [12]. The idea is to give
more preference to the most distant positive instances and to
the closest negative instances. This way, they try to tackle
the divergence of the loss caused by a high variation of food
images for the same recipe. Wehrmann et al. also address
the issue of quantitative dominance of weak negative samples
(i.e., already far from the anchor) over hard negative samples
[17]. They added a triplet loss term that is based on the hard
negatives (Max of Hinges) along with the regular pairwise
ranking loss term (Sum of Hinges):

L = λε ∗ Lsum + (1− λε) ∗ Lmax (5)

They multiply the Max of Hinges loss with a factor that is
growing over time, making the hardest negative example more
significant after each iteration.

Miech et al. introduced another modification to ensure that
the embedding model would be able to focus on the more
important aspects of visual features [15]. Their goal was to
train a model that would retrieve captions for instructional
videos, which tend to have many different actions but with

a constant background (e.g., cooking actions in the same
kitchen). Therefore, they applied an intra-video negative sam-
pling. Authors select the negative clip-text pairs, such that
at least half of them came from the same video, making
the irrelevant visual features to be ignored by embedding
model. All mentioned methods were introduced to improve
the quality of pair selection in a pairwise ranking loss. On
the other side, the pairing of samples can be also non-trivial,
especially for unsupervised learning. Laina et al. presented
one example for pairing unlabeled sentences [14]. As their
goal was unsupervised image captioning, they first defined a
universal set of concepts that is obtained from the intersection
of visual and semantic concepts. Then, the set of negative
sentences is selected such that the sentences do not have any
common visual concepts with the anchor, while the positive
examples must have at least 2 common visual concepts.
Following that, they selected positive pairs with probabilities
that are proportional to the number of common concepts.

Another important aspect of training cross-modal embed-
ding is to preserve the structure of the embedding space.
There are multiple ways of doing that, but the most widely
used methods are additional triplet loss terms and adversarial
learning that keep the structure of the embedding space
within each modality. Wray et al. introduced one example
of an application of additional triplet loss [16]. Authors use
4 triplet loss functions for learning embedding functions: 2
cross-modal and 2 within-modal. Within-modal loss functions
computed the triplet loss of video-video and text-text pairs to
ensure that the neighborhood structure for each modality was
preserved. Wehrmann et al. wanted to learn to caption images
in different languages, so they added a triplet loss that was
responsible for decreasing the distances between sentences
with identical semantics but in different languages while
pushing away sentences with different semantics [17]. Hao
et al. used generative adversarial networks that generate food
images from recipe embedding and classify the ingredients
from the image embedding to make sure that the resulting
embeddings are representative enough [12]. In contrast to the
aforementioned methods that learn the embedding structure in
parallel with cross-modal embedding, Laina et al. first build
the joint embedding space only with text modality [14]. They
use an encoder-decoder model to map the sentences into the

8



t

D

2D

input

Framewise Clustering BoW Videowise Clustering Local Pipeline

Figure 2. Proposed pipeline for unsupervised learning with unknown activity classes. We first compute an embedding with respect to the
whole dataset at once. In a second step, features are clustered in the embedding space to build a bag-of-words representation for each
video. We then cluster all videowise vectors into K0 clusters and apply the previously described method for each video set.

3.5. Unknown Activity Classes

So far we discussed the case of applying unsupervised
learning to a set of videos that all belong to the same ac-
tivity. When moving to a larger set of videos without any
knowledge of the activity class, the assumption of sharing
the same subactions within the collection cannot be applied
anymore. As it is illustrated in Fig. 2, we therefore cluster
the videos first into more consistent video subsets.

Similar to the previous setting, we learn a D-dimensional
embedding of the features but the embedding is not re-
stricted to a subset of the training data, but it is computed
for the whole dataset at once. Afterward, the embedded fea-
tures are clustered in this space to build a video representa-
tion based on bag-of-words using quantization with a soft
assignment. In this way, we obtain a single bag-of-words
feature vector per video sequence. Using this representa-
tion, we cluster the videos into K 0 video sets. For each
video set, we then separately infer clusters for subactions
and assign them to each video frame as in Fig. 1. However,
we do not learn an embedding for each video set but use the
embedding learned on the entire dataset for each video set.
The impact of K and K 0 will be evaluated in the experi-
mental section.

3.6. Background Model

As subactions are not always executed continuously and
without interruption, we also address the problem of model-
ing a background class. In order to decide if a frame should
be assigned to one of the K clusters or the background,
we introduce a parameter ⌧ which defines the percentage
of features that should be assigned to the background. To
this end, we keep only 1 � ⌧ percent of the points within
each cluster that are closest to the cluster center and add
the other features to the background class. For the label-
ing described in Sec. 3.4, we remove all frames that have

been already assigned to the background before estimating
lmn 2 {k1, . . . , kK} (3), i.e., the background frames are
first labeled and the remaining frames are then assigned to
the ordered clusters {k1, . . . , kK}.

4. Evaluation

4.1. Dataset

We evaluate the proposed approach on three challeng-
ing datasets: Breakfast [15], YouTube Instructional [1], and
50Salads [31].

The Breakfast dataset is a large-scale dataset that com-
prises ten different complex activities of performing com-
mon kitchen activities with approximately eight subactions
per activity class. The duration of the videos varies signif-
icantly, e.g. coffee has an average duration of 30 seconds
while cooking pancake takes roughly 5 minutes. Also in
regards to the subactivity ordering, there are considerable
variations. For evaluation, we use reduced Fisher Vector
features as proposed by [16] and used in [27] and we follow
the protocol of [27], if not mentioned otherwise.

The YouTube Instructions dataset contains 150 videos
from YouTube with an average length of about two min-
utes per video. There are five primary tasks: making cof-
fee, changing car tire, cpr, jumping car, potting a plant.
The main difference with respect to the Breakfast dataset
is the presence of a background class. The fraction of back-
ground within different tasks varies from 46% to 83%. We
use the original precomputed features provided by [1] and
used by [27].

The 50Salads dataset contains 4.5 hours of different peo-
ple performing a single complex activity, making mixed
salad. Compared to the other datasets, the videos are much
longer with an average video length of 10k frames. We
perform evaluation on two different action granularity lev-

Figure 7. The framework of the unsupervised action class algorithm as presented in [18].

embedding space and learn it via triplet loss. After building
this “semantic” space, they learn a translator that translates the
visual features into this space, returning the visual embedding
that can be decoded into an image caption.

B. Segmentation

Embedding also showed its potential in the area of segmen-
tation, which is not surprising with the fact that embedded fea-
tures are quite suitable for clustering. The literature suggested
2 types of segmentation using the concepts of embedding. The
first type is frame-level embedding, where each individual
frame of the video gets embedded into a low-dimensional
vector, making it possible to cluster frames and segment videos
into clips that represent single actions [18]. The second type
is pixel-level segmentation, where pixels in the image or in
the frame of a video are embedded individually and clustered
to segment foreground objects [19] or text instances [20] from
the background.

Kukleva et al. introduced the way to segment untrimmed
video in an unsupervised fashion, making it much easier and
cheaper to collect annotated video datasets that are in high
demand for action recognition models [18]. The authors first
train a model that predicts the relative timestamp of each frame
and use its last layer as the embedded features of the frames.
They justify this strategy by the fact that high-level activities
mostly preserve the order of sub-actions with respect to each
other. The features of all frames in the entire dataset are then
clustered in the embedding space to represent each video as a
bag-of-words. Then videos are clustered into some number
of video sets, where each set is further clustered into the
cluster that represents a single action label. The clusters are
assigned with the mean timestamp of all embedded features
in the cluster, allowing the model to order the actions. By
computing the probability of each frame to belong to each
cluster via Gaussian distribution, the model then temporally
segments videos, such that the likelihood of the sequence of
actions that consist of the sequence of labeled consecutive
frames is at its maximum. The framework is represented as in
Figure 7.

In a similar way, Li et al. pre-train a model that embeds
every pixel in the image [19]. The authors wanted to segment

foreground objects in the videos, but only using the model that
was trained on static images. They use the similarity scores
between the pixel embeddings to able to extract candidate
seeds that are not on edges and are diverse. They also use
the embedding graph, where the pixels are connected to their
neighbors and the edges are proportional to the Euclidean
distance between the vertices. The embedding graph is used to
split the image into regions around the seeds, which is assigned
with an optical flow vector averaged over the region. With flow
vectors, they compute the motion saliency of each candidate
foreground seed with respect to the background seeds. Finally,
they compute the foreground scores with motion saliency and
objectness scores for each seed and link the seeds with seeds
in other frames using similarity scores. They use the similarity
scores again to assign pixels to the foreground cluster. This
algorithm has multiple steps for extracting seeds, computing
their foreground scores, and linking to the other seeds. We
can see that all steps are primarily derived from the similarity
scores between pixels, which are computed via embedded
vectors of those pixels. The authors claim that this method
is a more robust way to segment video frames in comparison
with segmentation using the objectness scores of each pixel,
which usually struggles when there are two or more objects
with high objectness scores.

The last segmentation method in the literature aims to seg-
ment text instances from the images [20]. The authors compute
pixel-level embeddings for the image and use it in addition
to the full map and center map segmentation networks. They
introduce a Shape-Aware loss function to learn the embedding
function. It has 2 components: variance loss and distance loss.
Variance loss tries to minimize the distance between pixel
embedding of one instance and the mean embedding vector
of that instance. That distance is multiplied by a weight that
is proportional to the ratio of the longest side length of the text
to the longest side of the image. That means, the longer the text
is, the function will gather pixels of that text more significantly.
Distance loss tries to maximize the distance between mean
embedding vectors of 2 different instances. In this case, that
distance between 2 instances becomes a negative term. That
term is also multiplied by a weight factor. That weight factor
becomes smaller if those instances are close to each other,

9



ANP featureDeepSentiBank ANP feature

V
isual feature

Affective Structural EmbeddingInput Image (  )

Ă
Fear

Sadness

Anger

Joy

Labels (  )

Ă

Semantic Embedding

Sem
antic feature

text-based 
model

word2vec 
embedding 

Visual Embedding
CNN

Encoder Decoder

Latent feature

...
Sad dog

Sunny road

Sad face
Happy smile

Ă

... ...

Loss Function
Ă

Figure 2. Pipeline of the proposed approach for zero-shot emotion recognition. Given the training image, we first extract the ANP features
using the pre-trained DeepSentiBank detector and feed them into an auto-encoder to conduct the latent ANP space. Meanwhile, visual
features are also embedded in the latent ANP space to align with the embedded semantic features and measure the similarities for zero-shot
emotion recognition. The whole framework is trained by optimizing the multi-loss function in an end-to-end manner.

tural SVM loss function to learn the bilinear compatibil-
ity between visual and semantic space. SAE [21] proposes
a semantic autoencoder to regularize the model. It firstly
projects the image features to the semantic space and fur-
ther reconstructs them back to the visual space. DEM [44]
chooses to embed the semantic features to the visual space.
PSR [3] further considers the inter-class semantic rela-
tionships during the mapping process. Moreover, many
zero-shot learning approaches [19, 20, 32] learn to embed
both visual and semantic features into a latent intermediate
space.

However, all the above ZSL methods fail to capture the
specific emotion information for emotion recognition prob-
lem. The visual and class semantic features are located in
different structural spaces, both of which are independent of
emotions. Our model utilizes the mid-level semantic repre-
sentations to construct an intermediate space. It can reserve
emotion-related information and effectively bridge the af-
fective gap.

There are also a few recent methods that tackle the
zero-shot learning problem utilizing adversarial learn-
ing methods and generative adversarial networks (GAN).
GAZSL [52] leverages GANs to imagine the visual fea-
tures given the noisy textual descriptions from Wikipedia.
CVAE-ZSL [27] proposes to use conditional variational
autoencoder to generate samples for unseen classes. f-
CLSWGAN [36] applies GAN to generate image features
conditional on class attributes. The idea of GAN and ad-
versarial learning methods are to train a generator that can
fool a discriminator to confuse the distributions of the gen-
erated and true samples. The max-min training procedure
can lead the generator to model the data distribution. Our
method is similar to the GAN applied in the feature level.
In this paper, we employ adversarial learning to bridge the

gap between visual and affective features.

3. Methodology

In this section, we first formalize the zero-shot emo-
tion task and then introduce the proposed affective struc-
tural embedding model. As shown in Fig. 2, we propose
an independent affective structural embedding with tradi-
tional visual-semantic embedding. Specifically, the ex-
tracted ANP features are fed into an auto-encoder to learn
the latent ANP space, and then both visual and class seman-
tic features are embedded into the learned ANP space so as
to effectively bridge the affective gap. In addition, we intro-
duce an affective adversarial constraint to effectively com-
bine visual and ANP features so as to retain the discrimina-
tive capacity and the affective structural information.

3.1. Problem Definition

Following conventional zero-shot learning problem, we
split the affective dataset with s seen classes and u un-
seen classes. The training set is then defined as DS =
{(xs

i , y
s
i )}ns

i=1, where xs
i ∈ XS denotes the i-th image of

the seen class and ys
i ∈ YS is the corresponding class la-

bel. We define the test set as DU = {(xu
j , yu

j )}nu
j=1, where

xu
j ∈ XU denotes the j-th unseen image and yu

j ∈ YU is
the class label. The seen and unseen classes are disjoint, i.e.
YS ∩ YU = ∅. Additionally, we choose the word vector
zs
i and zu

j obtained by the NLP model [29] as the class se-
mantic features. Note that during the training stage, only
seen class images are used to learn the classifier model with
the assistance of semantic information zs. Given a test im-
age xu and the semantic feature zu, we aim to predict the
corresponding class yu.

1153

Figure 8. Framework for zero-shot emotion recognition from [21].

making the negative distance term less significant, which in
turn makes the overall loss larger, thus encouraging instances
that are close to each other to have more distant embeddings.
The mentioned weight factors are responsible to balance the
pushing and pulling force accordingly. Authors also claim that
it makes it easier to distinguish 2 instances that are just one or
two pixels away from each other. Given the full map and center
map, the algorithm decides whether the pixel that is outside of
the center map and inside the full map should be added to the
center map. The pixel will be assigned to the center map if its
embedded vector is close enough to the average embedding of
the center map.

C. Zero-Shot Learning
Current state-of-the-art image and video classification mod-

els are implemented by extracting visual features via CNN
and comparing it with a one-hot vector representation of the
class label. The problem of such methodology is that there
exists a significant gap between visual features and class
labels, which is the biggest obstacle for zero-shot learning.
This gap causes the models to overfit to the training data,
which doesn’t let them perform well when they see instances
from novel classes. The first step for eliminating this gap was
the integration of class attributes into the training process. This
is particularly relevant for the classification of objects that can
be described by the finite set of features (e.g., animals, birds).
The standard procedure was to pass the visual data through
a multi-label classifier that would identify the existence of
the attributes in the instance. Then, the final class prediction
would be the category that has a predicted set of attributes. The
main limitation of this method is that the visual instance must
have the features from that finite set of attributes, which does
not generalize well and requires additional human annotation.
On the other hand, the frameworks from the literature show
that those shortcomings can be mitigated with continuous
embedding space.

Zhan et al. suggest that zero-shot learning methods can help
in the emotion recognition from images, which is becoming

a more difficult task due to the developments in psychology
that make the basic emotion categories more fine-grained [21].
The authors use a pre-trained DeepSentiBank model to extract
the adjective-noun pair (ANP), which will be used as affective
features that will bridge the gap between visual features and
semantic labels. They extract visual features via a deep CNN
and semantic features via a Word2Vec model. Both features
are embedded into the same space as ANP features with a
fully connected layer. At this point, this methodology looks
quite similar to the cross-modal retrieval problem, except
the fact that the learning methods are different [12], [14]–
[17]. Unlike retrieval solutions, Zhan et al. do not incorporate
pairwise ranking loss. Instead, they align the semantic features
to both visual and ANP features via squared error function.
In addition, the embedded space is defined by the affective
ANP features. To preserve the affective embedding structure,
authors use adversarial learning to make sure that embedded
visual features preserve the structure established by ANP
features. With the finite set of classes, they pre-compute the
embedded vectors for all labels and find the nearest neighbor
for classification. The overall architecture of this framework
is depicted in Figure 8.

Zhu et al. propose a Generalized Zero-Shot Learning
method that is agnostic to both unseen images and unseen
semantic data during training [22]. They list 2 challenges in
GZSL: visual2semantic gap and semantic2visual gap. Visual
features, such as the final layers of deep networks are high-
dimensional and don’t have good semantic representation. On
the other hand, semantic features are not visually meaningful
and contain noisy components. The authors propose three
concepts to improve GZSL. The first concept is visually
semantic embedding. They take the high-dimensional visual
features and break them down into some arbitrary number of
parts using a multi-attention model. The obtained part vectors
are then modeled as the Gaussian Mixture Models, where
each mixture component of one part vector represents the
probability of that part to be of some particular type. This

10



embedding can be visualized as a 2-dimensional matrix, where
rows represent the parts, columns represent the types, and
each entry represents the probability of part at this row to
be the type of this column. The second concept is 3-Node
Graphical Model, where they establish the 3-way connection
(X ↔ Y,X ↔ S, Y ↔ S) where X represents the input
image, Y represents its label, and S represents the semantics
of that label Y, given that semantic information and labels
have a one-to-one mapping. This is quite different from the
traditional relationship in zero-shot learning (X ↔ S ↔ Y ).
They explain this by the fact that semantic information is
not fully visual, visual information is not fully semantic, and
class labels are not fully captured neither by visual features
nor by semantic features. They also introduce a Visual Oracle
Supervision, which is a ground truth matrix of part-types for
each image. This is the alternative to the regular semantic
oracle, where the semantic attributes (not to confuse with
labels) were used for supervision. Such kind of supervision
has much less noise than the regular semantic information and
has discriminative capabilities during training. They wanted to
see how the reduction of semantic noise affects performance.

D. Discussion

The described literature demonstrate that there are many
ways to incorporate embedding concepts into computer vision
frameworks. The ability to encode text via word embedding
models and recurrent neural networks made it possible for
researchers to come up with a new application for visual
features extracted from deep CNN models, which is known as
cross-modal retrieval. By embedding visual and text features
into a shared vector space, they were able to leverage the
alignment capacity of pairwise ranking loss to build structured
embedding space and learn embedding functions that provide
low-dimensional representations for high-dimensional visual
data. This in turn makes it possible to accurately retrieve
text from visual data for video/image captioning [14]–[17] or
food recipe retrieval [12]. This is not to mention that a well
structured embedding space could be a significant step towards
unsupervised captioning [14], as well as captioning in different
languages by making it language invariant [17].

The continuous nature of embedded features also makes
them suitable for clustering, which is actively used in segmen-
tation problems. We discovered how learning good embedding
functions for video frames makes it convenient to segment
untrimmed videos and label each segment with the most likely
action class in an unsupervised fashion [18]. Some frameworks
actively use pixel-level embeddings to compute the similarities
and distances between each pair of pixels in the images to
further use them as the decision criteria for including them
into the segments [19], [20]. For instance, Li et al. describe
a complex Video Object Segmentation framework whose core
component is the similarity scores between embeddings [19].

In zero-shot learning scenario, embedded features can ef-
fectively bridge the gap between visual features and semantic
labels [21], [22]. Zhan et al. define the structure of the
embedding space with affective features that play signifi-

cant role in emotion recognition [21]. The overall structure
of their framework is somewhat similar to the cross-modal
retrieval frameworks, though the learning process is quite
different. Zhu et al. showed that embedding visual data into
more compact embedding space that is also visually semantic
is quite beneficial [22]. We would want to highlight one
observation that the authors made. They found that using
regular semantic attributes (e.g., words) can be quite noisy
and bring unnecessary information. Their experiments, where
they substituted semantic oracle with visually semantic oracle
in their model and other GZSL models, showed that this
method of reducing semantic noise can significantly improve
the performance. This is a very interesting observation, which
proves that some semantic attributes are indeed noisy, while
the latent visually semantic features do not provide any extra
information.

IV. CONCLUSION

In this survey paper, we summarized and discussed recent
works in graph embedding, as well as the frameworks that
use embedding in different areas of computer vision. Those
frameworks demonstrate the variety and flexibility of embed-
ding application.

For graph embedding, we explored several domains. We first
discussed graph embedding approaches for recommendation
systems. For general item recommendation, we examined the
Semi-Parametric Embedding algorithm [2], and for drug rec-
ommendation we examined HS2Vec [3]. We then introduced
the knowledge graph domain and the WWV-KG algorithm
[4]. We discussed potential future work in which the WWV-
KG and the HS2Vec algorithms could be combined to create
a drug-discovery knowledge graph. Next, we shifted our
focus to the dynamic graph algorithms tNodeEmbed [6] and
DynGAN [7]. We observed their similarities, differences, and
how they could be further explored in future research. Lastly,
we observed how each graph embedding algorithm relies upon
proximity preservation, which led us into a discussion of our
final graph embedding algorithm, NECS [5].

For embedding in computer vision, we discussed the current
frameworks that employ embeddings for cross-modal retrieval,
video segmentation, object segmentation, and zero-shot learn-
ing. We observed how they build embedding spaces, learn
low-dimensional visual data representations, and cluster the
frames and pixels by leveraging the similarities and distances
between embedded vectors. It is also worth to mention that
many of those frameworks make significant steps towards
semi-supervised and unsupervised learning [14]–[16], [18],
[19], [21], [22].

Embedding is a powerful tool for dealing with unstructured
data in many domains. There are a myriad of ways to utilize
it, and this paper has provided several of them. Although this
survey is not exhaustive, it is our hope that it will serve as
a guide for researchers attempting to navigate the embedding
literature.

11



REFERENCES

[1] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

[2] P. Hu, R. Du, Y. Hu, and N. Li, “Du., r.: Hybrid item-item recommen-
dation via semi-parametric embedding,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI,
pp. 10–16, 2019.

[3] C. Ruan, J. Ma, Y. Wang, Y. Zhang, and Y. Yang, “Discovering
regularities from traditional chinese medicine prescriptions via bipartite
embedding model,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI-19), pp. 3346–3352,
International Joint Conferences on Artificial Intelligence, 2019.

[4] N. Veira, B. Keng, K. Padmanabhan, and A. Veneris, “Unsupervised em-
bedding enhancements of knowledge graphs using textual associations,”
in Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 5218–5225, AAAI Press, 2019.

[5] Y. Li, Y. Wang, T. Zhang, J. Zhang, and Y. Chang, “Learning network
embedding with community structural information,” in Proceedings
of the 28th International Joint Conference on Artificial Intelligence,
pp. 2937–2943, AAAI Press, 2019.

[6] U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal
graphs,” arXiv preprint arXiv:1903.08889, 2019.

[7] A. Maheshwari, A. Goyal, M. K. Hanawal, and G. Ramakrishnan, “Dyn-
gan: Generative adversarial networks for dynamic network embedding,”
2019.

[8] A. Chirkina and B. Rankov, “A recommender system for private bank-
ing,” 08 2018.

[9] C. Jinyin, X. Xu, W. Yangyang, and H. Zheng, “Gc-lstm: Graph
convolution embedded lstm for dynamic link prediction,” 12 2018.

[10] A. Singhal, “Introducing the knowledge graph: Things not strings.,”
2012.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Advances in Neural Information Processing Systems, vol. 3, 06 2014.

[12] H. Wang, D. Sahoo, C. Liu, E.-p. Lim, and S. C. Hoi, “Learning cross-
modal embeddings with adversarial networks for cooking recipes and

[21] C. Zhan, D. She, S. Zhao, M.-M. Cheng, and J. Yang, “Zero-shot
emotion recognition via affective structural embedding,” in Proceedings

food images,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 11572–11581, 2019.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in neural information processing systems, pp. 3111–
3119, 2013.

[14] I. Laina, C. Rupprecht, and N. Navab, “Towards unsupervised image
captioning with shared multimodal embeddings,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 7414–7424,
2019.

[15] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic,
“Howto100m: Learning a text-video embedding by watching hundred
million narrated video clips,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2630–2640, 2019.

[16] M. Wray, D. Larlus, G. Csurka, and D. Damen, “Fine-grained action
retrieval through multiple parts-of-speech embeddings,” in Proceedings
of the IEEE International Conference on Computer Vision, pp. 450–459,
2019.

[17] J. Wehrmann, D. M. Souza, M. A. Lopes, and R. C. Barros, “Language-
agnostic visual-semantic embeddings,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 5804–5813, 2019.

[18] A. Kukleva, H. Kuehne, F. Sener, and J. Gall, “Unsupervised learning
of action classes with continuous temporal embedding,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 12066–12074, 2019.

[19] S. Li, B. Seybold, A. Vorobyov, A. Fathi, Q. Huang, and C.-C.
Jay Kuo, “Instance embedding transfer to unsupervised video object
segmentation,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[20] Z. Tian, M. Shu, P. Lyu, R. Li, C. Zhou, X. Shen, and J. Jia, “Learning
shape-aware embedding for scene text detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4234–4243, 2019.
of the IEEE International Conference on Computer Vision, pp. 1151–
1160, 2019.

[22] P. Zhu, H. Wang, and V. Saligrama, “Generalized zero-shot recognition
based on visually semantic embedding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2995–
3003, 2019.

12


