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Abstract—Data embedding has become an increasingly popular
technique to aid in the processing of unstructured data. By
mapping data to a lower dimensional space, one can perform
various machine learning tasks with much greater ease, such as
image and video segmentation, recommendation system building,
and semantic search, among many other tasks. However, there
is a considerable amount of literature to parse through when
trying to decide the most relevant embedding approach for one’s
problem. This can be daunting for new researchers to the field, so
we attempt to address this issue through this survey paper. In this
paper, we describe recent approaches in embedding techniques
and applications. The domains covered are as follows: (1) Graph
Embedding, (2) Cross Modal Embedding, (3) Embedding for
Segmentation, and (4) Embedding within the context of Zero-
Shot Learning.

Index Terms—Embedding, Representation Learning, Segmen-
tation, Graph Theory, Zero-Shot Learning, Cross-Modal Re-
trieval

I. INTRODUCTION

One of the most common issues in Machine Learning
is figuring out how to properly wrangle large amounts of
unstructured data when creating models. Embedding data into
a lower dimensional space seems to aid greatly in alleviating
this issue. Embedding can be described as the translation of
high dimensional data into a lower dimensional form. Some,
but not all applications of embedding include natural language
processing, image and video captioning, recommendation sys-
tem building, semantic search, social network analysis, and
drug discovery.

This paper is a survey paper of several recent breakthroughs
within the field of embedding. Specifically, this paper focuses
on the fields of graph embedding and embedding in computer
vision. The contributions of this paper are as follows:

1) A general overview of several popular embedding do-
mains are given. Basic concepts and definitions are de-
scribed for those new to the field.

2) The state-of-the art algorithms within each embedding
domain are described, which is useful for any researcher
desiring a succinct summary of recent approaches.

3) The similarities and differences between the different
embedding approaches are discussed, which allows the
reader to know any tradeoffs or benefits that come with
using one type of algorithm over another.

This paper’s format is as follows. Section II will cover

Graph Embedding Techniques and Approaches. This section
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will define the graph embedding problem, establish basic
definitions, and discuss applications. There will be 4 different
types of graph embedding domains discussed: (1) graph em-
bedding for recommendation systems, (2) graph embedding
for knowledge graphs, (3) dynamic graph embedding, and
(4) the importance of leveraging proximity information when
embedding nodes in a graph.

Section III will focus on the applications embedding in
computer vision problems, such as cross-modal retrieval (5
papers), video/image segmentation (3 papers), and zero-shot
learning (2 papers). We will discuss how these algorithms
incorporate the embedding concepts into their frameworks, as
well as their similarities and differences.

II. GRAPH EMBEDDING

A graph is a mathematical structure used to model the
relationships between objects. It can be represented as a set
G = (V,E). V is the set of nodes in G, and E is the set of
edges in G. The number of nodes is n = |V/|. A single node
can be represented as v;, such that ¢ < n. An edge can be
represented as a tuple of form (v;,v;) in which ¢ < n and
j<n.

Graph Embedding is the representation of a graph in a lower
dimensional space. It is useful because most adjacency matrix
representations of graphs suffer from sparsity. In this section,
some current graph embedding techniques and applications
are discussed. We also discuss potential future research ideas
within this domain.

A. A Formal Definition of Graph Embedding

The objective of graph embedding is follows. Given a graph,
G with n vertices, and a predefined dimensionality, d < n,
we must convert GG into a d-dimensional space. d is usually
much smaller than n. The embedding of G into a smaller
dimensional space is done to achieve a dense representation of
the original graph. Figure 1 from Hu et al. shows an example
of embedding a graph into a 2-dimensional space [1].

B. Additional Concepts and Definitions

Before discussing the different graph embedding ap-
proaches, we present some basic definitions.

1) Homogeneous vs. Heterogeneous Graphs: A homoge-

neous graph is a graph in which there is only 1 type of



Figure 1. An example of a graph embedding from Hamilton et al. [1]. The
network used is the Karate Network, a popular small graph dataset. In (A),
we have our initial, unstructured graph. In (B), we have its embedding. In
this case, the number of dimensions, d, is equal to 2, but more dimensions
can be used.

node and 1 type of edge. For example, in [2], Hu et al.
describe their experiments in an item-item graph in which
the 1 type of node is an item, and the 1 type of edge is an
(item, item) edge. In a heterogeneous graph, there can be
more than type of node or edge. For example, in [3], Ruan
et al. use an herb-symptom graph, in which there are two
different node types: herbs and symptoms. There are also
different edge types: (herb, symptom), (herb, herb), and
(symptom, symptom).

2) Static vs. Dynamic Graphs: As previously mentioned, a
graph is simply a structure used to model the relationships
between objects. This basic type of graph can be consid-
ered “static” because there is no temporal information en-
coded into this modelling. However, a dynamic graph is a
structure used to model the relationships between objects
over time. So, it can be represented as a set, Giemporal
which is comprised of graph snapshots, G1, G2, ...Gyr,
at T different time steps, t; < ... < tp. The SPE [2],
HS2Vec [3], WWV-KG [4], and NECS [5] algorithms in
this paper are all static graph algorithms. tNodeEmbed
[6] and DynGAN [7] are dynamic graph algorithms.

3) Adjacency Matrix: An adjacency matrix is one type of
way to represent a graph. If n is the number of nodes
in a graph, an adjacency matrix A, would be a matrix
of size n x n. Each entry, v;; in an adjacency matrix
indicates whether an edge is formed between nodes v; and
v;. Typically 1 is used to indicate they are connected, and
0 is used to indicate they are not. Additionally, a weight
may be applied to these values as well to indicate the
relative “strength” of the edge.

4) Proximity: Proximity refers to the similarity of two
nodes. Formally, prozimity(vi,v;) = sij = s(v;,v;),
in which v; and v; are nodes, and s is a similarity
function. Different pieces of literature describe proximity
in different ways. We take our definition from [1], [2],
and [5].

5) First Order Proximity: This is the weight of the edge
between two nodes v; and v;. One can use a Facebook
network graph as an example to illustrate this concept.
Assume the nodes are users and assume that the edges
represent whether or not a user v; messaged user v;. The
first order proximity could represent how many times user
v; messaged user v; [5]..

6) Second Order Proximity: Second Order Proximity refers
to the similarity between the neighborhoods of two nodes
v; and vy [5]

7) Higher (Kth-Order) Proximity: There are various def-
initions of k higher order proximity depending on the
literature, but in this paper we will use this term to refer
to the k-hop transition probability between two nodes v;
and v;. In other words if one were to perform a random
walk on the graph G, what is the probability of reaching
node v; from v; in k or less hops? We take our definition
of higher order proximity from [5].

C. Link Prediction

In this section we will discuss both static and dynamic
link prediction. These are two common tasks that are highly
prevalent in the graph embedding papers discussed in this
survey, as well as in the field in general.

1) Static Link Prediction This is a common task for static
graph prediction models. The input to the model is a
graph in which some edges are missing or removed.
A successful link prediction model must be able to
predict the values of the missing edges given the present
edges. An application of this task in the real world is
item recommendation. In this setting, the edges would
represent whether a particular user would buy a particular
item, in which case the edge would take on the form (user,
item). Alternatively, the edge could represent whether
someone who bought item A would also buy item B
(item, item). Figure [8] shows an example of static link
prediction within the domain of user-item recommenda-
tion. The SPE [2], HS2Vec [3], WWV-KG [4], and NECS
[5] algorithms in this paper can be used for static link
prediction.

2) Dynamic Link Prediction In this setting, the model must
predict whether an edge between two nodes will exist at
some point in the future. Figure 3 from [9] shows an
example of dynamic link prediction. For example, in the
image, in timestep G, edge (2, 3) does not exist, but in
timestep G¢41, it does. An application of dynamic link
prediction would be predicting which users will interact
with each other on a social media platform, or predicting
whether two proteins will interact in a protein-protein
interaction network (PPI). tNodeEmbed [6] and DynGAN
[7] can be used for dynamic link prediction.

D. Embedding for Recommendation Systems

In this section we will discuss graph embedding techniques
for Recommendation systems. We will discuss 2 different
algorithms: Semi-Parametric Embedding (SPE) [2] and and
HS2Vec [3].

1) Recommendation Algorithm #1: Semi-Parametric Em-
bedding: The SPE model was made for item to item recom-
mendation (I2IR). I2IR is the field of study that is concerned
with how to recommend items to a user given their purchasing
history [2]. An example of I12] recommendation is Amazon’s
“Customers Also Purchased” feature on their website. One
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Figure 2. A real-world static link prediction example. Given the partially
completed matrix of user-item ratings, we must predict whether or not a user
should be recommended a particular item. Source: [8].

Figure 3. An example of dynamic link prediction. In timestep G, edge (2,
3) does not exist, but in timestep G¢41, it does. Source: [9].

of the main issues of the I2I field is figuring out the best
methodology for recommending items to a user. There are 2
approaches.

Firstly, there is the behavior-based approach which makes
the assumption that similar users will prefer similar items. In
other words, if Stan likes a movie, X, the recommendation
system will look at the movie history of other users who
viewed movie X and will recommend Stan a movie based
on those users’ history.

Secondly, there is the content-based approach, which as-
sumes that similar items will be preferred by similar users. For
example, if Stan likes a movie, X, the recommendation system
will solely recommend a movie to Stan based on the features
of that movie. So, if he saw a movie about cars, the algorithm
will try to find other movies about cars that Stan would like.
A content-based model does not take into consideration what
other users liked.

The SPE algorithm seeks to combine both the behavior-
based and content-based recommendation methdologies into
1 model [2]. Specifically, it takes as input both an item-item
co-occurrence matrix, R, the item feature (content) matrix,
C, and a statistics matrix B. To evaluate the effectivess of
SPE, the authors used a similarity score to compare the results
of SPE to real-life item-item co-occurrences. A successful
recommendation algorithm should be able to give a high
ranking to similar items and a low ranking to less similar
items. The similarity score the authors used is the following:

1
T
Vectors v; and v; are the embedding vector for two items.

The sigmoid function is used to keep the similarity score
between 0 and 1.

6]

s(vs,v5) =

2) Recommendation Algorithm #2 HS2Vec for Herb-
Symptom Graphs: : The authors of [3] created an embedding
algorithm for an herb-symptom co-occurrence graph. The
application of these embeddings would be for regularities
analysis and herb recommendation in the context of Traditional
Chinese Medicine. An algorithm that utilized this embedded
herb-symptom graph would be addressing the following prob-
lem: Given a list of symptoms, what would be the best herbs
to use for treatment?

The steps of this algorithm are as follows:

1) First, an herb-symptom co-occurrence matrix is created
from prescription data. There is an edge between an herb
and a symptom if they co-occur in the same prescription.
There is an edge between two herbs if they can address
the same symptom, and there is an edge between two
symptoms if they can be treated by the same herb. This
concept of connecting two nodes by their association with
another node is known as meta-path based proximity.

2) This resulting matrix, 1" is the Traditional Chinese
Medicine Network (TCMN). It is sent through an au-
toencoder that has the following objective: to embed the
matrix to the lower dimension so that 1st and 2nd order
proximity is maintained throughout each node embed-
ding. In other words, if two herbs treat similar symptoms,
then their embeddings should be similar to one another.

3) The autoencoder has now successfully created an em-
bedding space for the TCMN network. These embedding
vectors can be used for a variety of downstream tasks
such as clustering and link prediction.

Figure 4 shows the architecture of HS2Vec.

3) HSVec and SPE: How Are They Similar?: SPE [2]
and HSVec [3] are similar in the following ways. They are
both embedding approaches with use cases cases within the
field of recommendation. SPE is used for embedding item-
item matrices for general item recommendation. As a matter
of fact, the authors used Amazon, Yelp, and Alibaba datasets
in their experiments to show its capability of operating in
such a domain. These 3 companies are well known for using
recommendation systems as part of their infrastructure.

HS2Vec can be used for recommending the best herb
treatment given a list of symptoms in Traditional Chinese
Medicine. It can also be extended to recommend the best
medications given a list of symptoms in Western Medicine.
Additionally, both approaches are similar in that they require
the calculation of co-occurrence matrices. For SPE, the co-
occurrence matrix represents how often each item is bought
or clicked by the same user. For HS2Vec, the co-occurrence
matrix represents how often certain herbs and symptoms co-
occur within the same prescription [3].

4) HSVec and SPE: How Are They Different?: The
two algorithms differ in the following ways. The item-item
matrix used in SPE is a homogeneous network. Recall that a
homogeneous network is one in which there is only one type
of node and edge [2]. In this case, the node type is only item
and the edge type is (item, item).
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Figure 4. The HS2Vec architecture [3].

Contrast this with the Traditional Chinese Medicine Net-
work used in HS2 Vec, which is a heterogeneous network [3].
Recall that a heterogeneous network is one in which there is
more than 1 type of node and/or more than 1 type of edge.
In the TCMN network, there are two types of nodes, herb
and symptom. Furthermore, there are 3 types of edges: (herb,
herb), (herb, symptom), and (symptom, symptom).

The difference in corresponding graph types leads into
the next major difference between the two algorithms. Since
HS2vec takes as input a heterogeneous graph, the authors had
to use meta-path-based proximity in order to accurately cap-
ture the relationships among herbs and symptoms. To calculate
meta-path-based proximity, one must find the metapath edges.

A metapath edge is an edge created by creating a path
between two otherwise disconnected nodes. A path is found
between the two nodes by their association with 1 or more
nodes in the graph. For example, let H; and H» be herbs, and
let S be a symptom. If herbs H; and Hy could be both be
used to treat symptom .S, it can then be said that there is a
metapath that exists from H; to Hy of the following form:

H1—>S—)H2

Applying this methodology at scale to thousands of pre-
scriptions allows one to create a richer Traditional Chinese
Medicine Network, which in turn would allow HS2Vec to
create better node embeddings [3].

E. Embedding for Knowledge Graphs

This section introduces the concept of knowledge graphs.
They have many applications in query systems. However,
recent research has applied them to recommendation systems
as well. First, the definition of knowledge graphs will be
given, followed by a discussion of a recent knowledge graph
embedding algorithm, called the Weighted-Word Vector Model

for Knowledge Graphs (WWV-KG) [4]. The last part of this
section will discuss potential future research ideas combining
knowledge graphs with recommendation system embedding
algorithms such as HS2Vec and SPE.

1) Knowledge Graph Definition: A knowledge graph is
a representation of knowledge as a collection of facts. As
described by Veria et al. in [4], each fact is a triplet comprised
of subject, predicate, and object. More formally, a triplet,
(subject, object, predicate), would be notated as (es, 7, €,). €5
and e, are nodes known as entities, and the relation, r,,, would
be the type of edge that connects these two nodes together.
Note that a knowledge graph is a type of heterogeneous graph
because there are two types of nodes: subject and predicate
nodes, and there are multiple types of relation edges. An
example of a fact triplet would be (Thomas Jefferson, “Is
A Founding Father in addition to”, George Washington ).
Thomas Jefferson and George Washington are the entities, and
they are related to one another because they are both Founding
Fathers of the United States of America.

An example of a knowledge graph application would be
Google’s Knowledge Graph as described by Singhal in [10].
It is a knowledge base implemented as a knowledge graph,
and it is used by Google to enhance a user’s search results.
When a user enters a query into Google Search, on the results
page, there is an info box that appears with some information
related to the query.

2) Improving Knowledge Graphs with Text Data: As one
can see, the strength of a knowledge graph relies on its
underlying knowledge base. Without a rich collection of fact
triplets, a knowledge graph cannot be of any use. The authors
of [4] presented an unsupervised approach to improving the
collection of knowledge graph triplets using text data. The
framework is as follows.

1) The input to the framework is the full corpus of text data
being used, as well as all relations of interest from the



pre-existing knowledge graph.

2) This text is used to a train a Word2Vec model. Each word
in the corpus now has an associated word vector.

3) Entity vectors are then created by performing a weighted
mean among all relevant word vectors. For example, a
word vector would be considered relevant if it appeared
within the same sentence as an entity. Irrelevant word
vectors are not included in the weighted mean.

The triplets can then be mapped to an embedding space. The
loss function of this algorithm is a triplet loss, in which a lower
loss is output if the distance between the anchor embedding
and positive embedding is smaller than the distance between
the negative embedding and the anchor.

3) Using Knowledge Graphs With HS2Vec: The ideas
presented in the HS2Vec paper [3] can be applied to knowl-
edge graph generation as well. Note that the limitation of
this network is that the only information used to associate
symptoms with herbs is their co-occurrences and meta-paths.
If one were to convert the TCMN into a knowledge graph,
the types of fact triplets derived could take the following
form: (herb;, “can be used to treat symptom;”, herby), or
(symptom;, “can both be treated by herb,”, symptomy).

However, in the real world, much more information might
be taken into account when treating a patient, such as their
medical history, genetic information, etc. Some additional
node types that could be added to the TCM Knowledge Graph
could be: patient, disease, etc. An example of a triplet fact
within this new type of knowledge graph could be: (patient,
“is allergic to” herb).

F. Dynamic Graph Embedding

Thus far, this section has mainly discussed embedding
techniques and applications for static graphs. However, many
networks in the real world are dynamic and change over time.
New edges can appear at different points in time, as shown
in Figure 3. In this section, we will discuss dynamic network
embedding techniques and applications.

1) tNodeEmbed: In [6], Singer et al. present their algo-
rithm, tNodeEmbed, a node embedding algorithm for temporal
graphs. Their goal is to find for each node v € V at time
T a feature vector fr that minimizes the loss of any given
prediction tasks. The two tasks the authors focus on is node
classification and link prediction.

tNodeEmbed uses a matrix (), for each timestep t, that
is initialized using the popular node-embedding algorithm,
node2vec. The objective of node2vec is to embed a node so
that its entire neighborhood vector can be predicted from it.
tNodeEmbed utilizes node2vec’s initial embeddings so that it
can capture how a node’s neighborhood vector evolves over
time [6].

2) DynGAN: In [7], Maheshwari et al. present a DynGAN,
which is a dynamic graph embedding model that leverages
Generative Adversarial Networks, or GANs. GANs were first
introduced by Ian Goodfellow et al. in [11]. They are neural
network architectures each comprised of two networks, a
Generator (G), and a Discriminator (D). The goal of G is to

create samples that are similar to the training set. The goal
of D is to be able to successfully distinguish between real
examples from the training set, and fake examples from G. If
G and D are trained properly, G will be able to create samples
so similar to the training set that D cannot tell the difference.

There are 2 variations of the DynGAN model, the DynGAN
and DynGAN LSTM model. The DynGAN model is an
ensemble model comprised of a sequence of GAN models of
length ¢ 4 [. [ is a look-back factor that represents how many
timesteps the GAN model should “look-back” in time when
training on the dynamic graph sequence. The DynGAN-LSTM
model has a similar setup to the DynGAN model, except it also
includes LSTM layers. The input to either DynGAN model is
a sequence of graphs of length ¢ 4 {. The output of the model
is the adjacency matrix of the graph at time ¢+ [+ 1. In other
words, the model takes in a sequence of graphs and tries to
reconstruct what the adjacency matrix would look like at time
t+1+1.

The objective function is as follows:

min max V (G, D)
b Op
2

= EUNPtruc(.\1yC) [IOg D(’U, Ve; 0p, wD)]
JrEUNPG(,\vC [log(1 — (D(v,ve;0p,wp))]

9 wa)

ve 1S a context node. v is a neighbor of v.. fp and
wp represent the parameters and weights of D, respectively.
perue(.]v.) represents the node neighborhood of context node
v. and pg represents the predicted node neighborhood of the
generator, G. The objective of the generator is to predict what
a node’s neighborhood will look like at time ¢, while D’s
objective is to be able to distinguish whether G’s output is
correct or not.

Figure 5 shows the architecture of DynGAN-LSTM.
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Figure 5. The LSTM DynGAN architecture. The setup is similar to the

vanilla DynGAN algorithm, but now there are LSTM layers included in the
architecture.

3) DynGAN and tNodeEmbed: Similarities: DynGAN
and tNodeEmbed are similar in the following ways. They
both utilize previous time step embeddings to inform their
embeddings at the next timestep. They both can be utilized
for future link prediction, and the objective both of their loss
functions is to re-create the neighborhood of any given node.



4) DynGAN and tNodeEmbed: Differences: The algo-
rithms differ in some obvious ways. Firstly, DynGAN utilizes
an adversarial approach to learn the graph at the next time
step, whereas tNodeEmbed does not.

Secondly, both algorithms utilize the previous time step
embeddings to make future embeddings, they take different
approaches in doing so. In both DynGAN and DynGAN-
LSTM, the weights learned by a GAN sub-module at timestep
t — 1 are used to initialize the GAN sub-module at timestep t.
However, in tNodeEmbed, the authors also utilize a technique
called matrix rotating. The intuition behind this technique is
that it will keep each node embedding similar throughout each
time step even though the node may change behavior over
time.

The tradeoff that comes with this technique is that one
can only use tNodeEmbed with networks that have the same
number of nodes every time step. In order to rotationally align
two matrices, the matrices must be of the same size. This may
not be ideal because in the real world, many dynamic graphs
increase their number of nodes over time. Take any social
network, for instance. The number of users on Facebook or
Twitter has only grown ever since the beginning of those sites.

DynGAN, on the other hand, can be used with graphs whose
nodes increase over time. As a matter of fact, for one of their
experiments, the authors used DynGAN on a dynamic graph
whose number of nodes increased over time.

The tNodeEmbed creators tested the algorithm on on the
Cora and DBLP datasets both with and without the use of
the rotation technique. Table II shows the results of this
experiment. While this experiment shows that using this
technique does improve performance, one must consider if
the improvement is worth losing the ability for accounting for
growing graphs. For example, in the table, when using the
Micro F1 metric, the performance improvement is about 2%
and for DBLP the improvement is about 4%. For the Macro
F1 metric, the improvement was 4% and 11% for Cora and
DBLP respectively. While the Macro F1 definitely shows a
considerable improvement, the Micro F1 score does not show
much improvement. So, depending on the problem and type
of metric that one is most concerned with, it may be better to
remove the matrix rotation component of tNodeEmbed if one
is working with growing graphs. Otherwise, one could only
predict the evolution of the nodes that existed in the first time
step. An interesting future experiment would be to compare
the performance of tNodeEmbed and DynGAN on graphs that
retain the same number of nodes over time. Then, one could
remove the rotation matrix component of tNodeEmbed and
compare that with DynGAN on graphs that grow in size over
time.

G. Retaining Proximity Information in Graph Embedding and
the NECS Algorithm

An important aspect of graph embedding is retaining the
proximity information of each node. Here are 2 ways to
incorporate proximity information when embedding:

Table 1
TNODEEMBED NODE CLASSIFICATION PERFORMANCE BOTH WITH AND
WITHOUT THE ROTATION ALIGNMENT STEP. WHILE IT DOES MAKE A
DIFFERENCE, ONE MUST CONSIDER IF THIS DIFFERENCE WARRANTS
LOSING THE ABILITY TO PREDICT PERFORMANCE ON GROWING GRAPHS.

Dataset | Micro F1 Macro F1 AUC CC
with without | with without | with without

Cora 0.668 | 0.644 0.513 | 0475 0.925 | 0919 0.275

DBLP 0.822 | 0.785 0.504 | 0.390 0.997 | 0.959 0.002

1) Define node similarity in terms of how many neighbors
two nodes have in common, and the weights between any
2 given nodes. Then, in the objective function, optimize
the embeddings for maximum similarity between similar
nodes or maximum distance between dissimilar nodes.

2) Maximize the probability that the model can re-create
the full neighborhood vector of any given node (2nd
order proximity) as well as the corresponding weights
(1st order proximity). This entails that nodes with similar
neighborhoods will have similar embeddings.

Here are some examples of how the algorithms in this paper
utilized these ideas:

1) SPE [2] performs (2) when embedding an item feature
matrix into the lower dimensional form g(c). Secondly,
when the final item embeddings are being used to recom-
mend items, SPE uses (1) because the similarity between
two item embedding vectors is calculated.

2) HS2Vec [3] utilizes a loss function that exploits both
(1) and (2). It uses an autoencoder to create a lower
dimensional embedding for an edge, (v;,v;) and its
objective is to ensure that the similarity between the
hidden layer representations of the edge and the re-
created input vectors of the edge are the same as the
original edge vector, (v;,v;).

3) tNodeEmbed [6] utilizes node2vec which in turn utilizes
(2). The objective in node2vec is to embed a node such
that one can re-create its neighborhood vector, N(v).

4) DynGAN [7] utilizes (2). The Generator attempts to re-
create a neighborhood vector, N(v.), given a context
node 1-hot vector, v..

The last graph embedding algorithm to be discussed in
this section of the paper is called Network Embedding with
Community Structural Information (NECS) by Li et al. in [5].
This algorithm heavily utilizes node proximity information for
embedding, albeit, in a different way than the aforementioned
algorithms do.

The authors of the paper argue that most graph-embedding
approaches do not utilize high-order proximity information
for graph embeddings, so to remedy that issue, they propose
NECS [5]. The input to NECS is a high-order proximity
matrix, P, which is created from the graph adjacency matrix
A:

P=W;A+ WyA% + ...+ WA (3)

In the adjacency matrix, A, the value at coordinate (i, )
is 1 if the nodes v; and v; are connected, and O otherwise.



A TABLE OF THE DIFFERENT GRAPH EMBEDDING ALGORITHMS COVERED IN THIS SURVEY, AS WELL AS THEIR OBJECTIVES AND APPLICATIONS.

Table 11

Algorithm

Objective

Application

Semi Parametric
Embedding [2]

Leverage both content-based and co-occurrence
based item features to embed all items
from a co-occurrence matrix.

Item-item recommendation for
consumers (e.g., Amazon, Alibaba)

HS2Vec [3]

Leverage herb-drug, herb-herb, and drug-drug
co-occurrences and metapaths to embed herbs and
drugs in a shared latent space.

Drug-herb discovery for Traditional
Chinese Medicine

Weighted-Word Vector
Algorithm
for Knowledge Graphs [4]

Calculate positive and negative fact entity triplets
of form (subject, predicate, object)

and use a triplet loss to embed the individual
entities in a shared latent space.

Knowledge base creation, search engine
creation (example: Google’s
Knowledge Graph)

DynGAN-LSTM [7]

Learn the embedding of a node’s
neighborhood vector at time t
via an adversarial approach.

Dynamic link prediction and graph
reconstruction

tNodeEmbed [6]

Learn the embedding of a node at time t.

Dynamic link prediction and node
classification

Network Embedding with

Learn the static embedding of a node using
its community and structural information

Static link prediction and node

Community Structure [5] in the network.

classification.

The W matrices are the weight matrices for each adjacency
matrix. The [ denotes the proximity. For example, W denotes
the weight matrix for the 2nd proximity adjacency matrix. A2
is the proximity matrix for the 2nd order proximity of A. It is
found by squaring A.

The authors incorporate high-order proximity into their
network embedding by performing a matrix factorization on
matrix P. In other words, they are trying to find to matrices
U and V such that the expression ||P - VU |5 is minimized.
Afterward, more matrix operations are applied to create em-
beddings for the overall “community” structure of the original
graph. The authors do this because they claim that by doing
so, they can create better node embeddings.

H. Graph Embedding: Discussion

In this section, graph embedding use cases and applications
were discussed. First, we explained basic definitions and
applications. Then, we discussed several domains of graph
embedding and some of the latest algorithms associated with
each one. For recommendation systems we discussed SPE [2]
and HS2Vec [3]. We then introduced knowledge graphs and
WWV-KG [4], an unsupervised method for improving knowl-
edge graphs with text data. For dynamic graph embedding,
tNodeEmbed [6] and DynGAN [7] were discussed. Lastly, we
discussed the importance of retaining proximity information
in graph algorithms and introduced an algorithm called NECS
[5]. Table II shows the different graph embedding algorithms
covered in this section.

This concludes the graph embedding section of the survey.
The following section will explain the approaches within the
fields of computer vision.

III. EMBEDDING IN COMPUTER VISION

The concepts of embedding are widely used in computer
vision applications. In this section, we present the application
of embedding concepts in cross-modal information retrieval,
video and image segmentation, and zero-shot learning.

A. Cross-Modal Retrieval

Word embedding models, such as Word2Vec [13], were
widely adopted in information retrieval tasks. The next logical
step was to use embedding for retrieving data in different
modalities, such as text, images, and videos. These frameworks
mostly deal with captioning visual data or retrieving visual
data using text [14]-[16]. Some works have more specific
goals, such as food recipe retrieval from food images [12] or
captioning images in different languages [17]. All these frame-
works embed the visual feature vectors and text vectors into
a shared space. The goal is to learn the embedding functions,
such that relevant visual and text embeddings are mapped
close to each other while keeping irrelevant embeddings as
far as possible. A sample structure of a cross-modal retrieval
framework is shown in Figure 6.

The first step of cross-modal retrieval frameworks is encod-
ing visual and text data into lower-dimensional feature vectors.
There are two types of visual data: images and videos. Both
can be encoded into lower-dimensional feature vectors with
convolutional neural networks. Video features can be obtained
by adding a temporal dimension to the convolution filters
or by combining visual features of individual frames. Text
data are usually encoded via recurrent neural networks, such
as LSTM, GRU, and their variations. The input data to the
network are word vectors that can be computed with widely-
used word-embedding models, such as Word2Vec or GloVe.
One framework in the literature implements a novel word-
embedding model, where it encodes the words on a character-
based level [17]. The authors represent each character as a
24-dimensional vector and a single word is represented as a
matrix. This matrix is passed through 2 fully connected layers
and returned as a word-level embedding, which is ready to be
consumed by text encoding RNN models. This kind of word-
level embedding does not require extra space for thousands
of word vectors as it depends on the number of letters in the
alphabet and the size of fully connected layers. In cross-modal
retrieval, visual and text feature vectors are further embedded
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Figure 6. The framework of an image captioning model from [12].

into the shared embedding space. Most approaches use multi-
layer perceptrons for the embedding step.

The state-of-the-art information retrieval frameworks in-
corporate a pairwise ranking loss function, also known as
triplet loss, in their learning process. Cross-modal retrieval
frameworks are not exceptions. The canonical equation for the
pairwise ranking loss in cross-modal retrieval looks as follows:

L= Z max(’y + d(fvi ’ gtj) - d(fvz ’ gtk)’ 0) (4)
i4,k

The f,, represents the anchor visual embedding, g;, rep-
resents positive text embedding, and g¢;, represents negative
text embedding. The function d(x,y) computes the distance
between two vectors. Some papers use a similarity function
instead of a distance function and put the opposite sign
in front. The second term would look identical with text
embedding being the anchor and visual embeddings being the
positive and negative instances.

It is important to mention that there are some modifications
applied to this loss function in the literature to meet specific
goals. For instance, Hao ef al. adopt a hard sample mining
strategy when computing triplet loss [12]. The idea is to give
more preference to the most distant positive instances and to
the closest negative instances. This way, they try to tackle
the divergence of the loss caused by a high variation of food
images for the same recipe. Wehrmann ef al. also address
the issue of quantitative dominance of weak negative samples
(i.e., already far from the anchor) over hard negative samples
[17]. They added a triplet loss term that is based on the hard
negatives (Max of Hinges) along with the regular pairwise
ranking loss term (Sum of Hinges):

L= )\% Esum + (]- - )\E) * »Cmaac (5)

They multiply the Max of Hinges loss with a factor that is
growing over time, making the hardest negative example more
significant after each iteration.

Miech et al. introduced another modification to ensure that
the embedding model would be able to focus on the more
important aspects of visual features [15]. Their goal was to
train a model that would retrieve captions for instructional
videos, which tend to have many different actions but with

a constant background (e.g., cooking actions in the same
kitchen). Therefore, they applied an intra-video negative sam-
pling. Authors select the negative clip-text pairs, such that
at least half of them came from the same video, making
the irrelevant visual features to be ignored by embedding
model. All mentioned methods were introduced to improve
the quality of pair selection in a pairwise ranking loss. On
the other side, the pairing of samples can be also non-trivial,
especially for unsupervised learning. Laina et al. presented
one example for pairing unlabeled sentences [14]. As their
goal was unsupervised image captioning, they first defined a
universal set of concepts that is obtained from the intersection
of visual and semantic concepts. Then, the set of negative
sentences is selected such that the sentences do not have any
common visual concepts with the anchor, while the positive
examples must have at least 2 common visual concepts.
Following that, they selected positive pairs with probabilities
that are proportional to the number of common concepts.
Another important aspect of training cross-modal embed-
ding is to preserve the structure of the embedding space.
There are multiple ways of doing that, but the most widely
used methods are additional triplet loss terms and adversarial
learning that keep the structure of the embedding space
within each modality. Wray et al. introduced one example
of an application of additional triplet loss [16]. Authors use
4 triplet loss functions for learning embedding functions: 2
cross-modal and 2 within-modal. Within-modal loss functions
computed the triplet loss of video-video and text-text pairs to
ensure that the neighborhood structure for each modality was
preserved. Wehrmann et al. wanted to learn to caption images
in different languages, so they added a triplet loss that was
responsible for decreasing the distances between sentences
with identical semantics but in different languages while
pushing away sentences with different semantics [17]. Hao
et al. used generative adversarial networks that generate food
images from recipe embedding and classify the ingredients
from the image embedding to make sure that the resulting
embeddings are representative enough [12]. In contrast to the
aforementioned methods that learn the embedding structure in
parallel with cross-modal embedding, Laina et al. first build
the joint embedding space only with text modality [14]. They
use an encoder-decoder model to map the sentences into the
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Figure 7. The framework of the unsupervised action class algorithm as presented in [18].

embedding space and learn it via triplet loss. After building
this “semantic” space, they learn a translator that translates the
visual features into this space, returning the visual embedding
that can be decoded into an image caption.

B. Segmentation

Embedding also showed its potential in the area of segmen-
tation, which is not surprising with the fact that embedded fea-
tures are quite suitable for clustering. The literature suggested
2 types of segmentation using the concepts of embedding. The
first type is frame-level embedding, where each individual
frame of the video gets embedded into a low-dimensional
vector, making it possible to cluster frames and segment videos
into clips that represent single actions [18]. The second type
is pixel-level segmentation, where pixels in the image or in
the frame of a video are embedded individually and clustered
to segment foreground objects [19] or text instances [20] from
the background.

Kukleva et al. introduced the way to segment untrimmed
video in an unsupervised fashion, making it much easier and
cheaper to collect annotated video datasets that are in high
demand for action recognition models [18]. The authors first
train a model that predicts the relative timestamp of each frame
and use its last layer as the embedded features of the frames.
They justify this strategy by the fact that high-level activities
mostly preserve the order of sub-actions with respect to each
other. The features of all frames in the entire dataset are then
clustered in the embedding space to represent each video as a
bag-of-words. Then videos are clustered into some number
of video sets, where each set is further clustered into the
cluster that represents a single action label. The clusters are
assigned with the mean timestamp of all embedded features
in the cluster, allowing the model to order the actions. By
computing the probability of each frame to belong to each
cluster via Gaussian distribution, the model then temporally
segments videos, such that the likelihood of the sequence of
actions that consist of the sequence of labeled consecutive
frames is at its maximum. The framework is represented as in
Figure 7.

In a similar way, Li ef al. pre-train a model that embeds
every pixel in the image [19]. The authors wanted to segment

foreground objects in the videos, but only using the model that
was trained on static images. They use the similarity scores
between the pixel embeddings to able to extract candidate
seeds that are not on edges and are diverse. They also use
the embedding graph, where the pixels are connected to their
neighbors and the edges are proportional to the Euclidean
distance between the vertices. The embedding graph is used to
split the image into regions around the seeds, which is assigned
with an optical flow vector averaged over the region. With flow
vectors, they compute the motion saliency of each candidate
foreground seed with respect to the background seeds. Finally,
they compute the foreground scores with motion saliency and
objectness scores for each seed and link the seeds with seeds
in other frames using similarity scores. They use the similarity
scores again to assign pixels to the foreground cluster. This
algorithm has multiple steps for extracting seeds, computing
their foreground scores, and linking to the other seeds. We
can see that all steps are primarily derived from the similarity
scores between pixels, which are computed via embedded
vectors of those pixels. The authors claim that this method
is a more robust way to segment video frames in comparison
with segmentation using the objectness scores of each pixel,
which usually struggles when there are two or more objects
with high objectness scores.

The last segmentation method in the literature aims to seg-
ment text instances from the images [20]. The authors compute
pixel-level embeddings for the image and use it in addition
to the full map and center map segmentation networks. They
introduce a Shape-Aware loss function to learn the embedding
function. It has 2 components: variance loss and distance loss.
Variance loss tries to minimize the distance between pixel
embedding of one instance and the mean embedding vector
of that instance. That distance is multiplied by a weight that
is proportional to the ratio of the longest side length of the text
to the longest side of the image. That means, the longer the text
is, the function will gather pixels of that text more significantly.
Distance loss tries to maximize the distance between mean
embedding vectors of 2 different instances. In this case, that
distance between 2 instances becomes a negative term. That
term is also multiplied by a weight factor. That weight factor
becomes smaller if those instances are close to each other,
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Figure 8. Framework for zero-shot emotion recognition from [21].

making the negative distance term less significant, which in
turn makes the overall loss larger, thus encouraging instances
that are close to each other to have more distant embeddings.
The mentioned weight factors are responsible to balance the
pushing and pulling force accordingly. Authors also claim that
it makes it easier to distinguish 2 instances that are just one or
two pixels away from each other. Given the full map and center
map, the algorithm decides whether the pixel that is outside of
the center map and inside the full map should be added to the
center map. The pixel will be assigned to the center map if its
embedded vector is close enough to the average embedding of
the center map.

C. Zero-Shot Learning

Current state-of-the-art image and video classification mod-
els are implemented by extracting visual features via CNN
and comparing it with a one-hot vector representation of the
class label. The problem of such methodology is that there
exists a significant gap between visual features and class
labels, which is the biggest obstacle for zero-shot learning.
This gap causes the models to overfit to the training data,
which doesn’t let them perform well when they see instances
from novel classes. The first step for eliminating this gap was
the integration of class attributes into the training process. This
is particularly relevant for the classification of objects that can
be described by the finite set of features (e.g., animals, birds).
The standard procedure was to pass the visual data through
a multi-label classifier that would identify the existence of
the attributes in the instance. Then, the final class prediction
would be the category that has a predicted set of attributes. The
main limitation of this method is that the visual instance must
have the features from that finite set of attributes, which does
not generalize well and requires additional human annotation.
On the other hand, the frameworks from the literature show
that those shortcomings can be mitigated with continuous
embedding space.

Zhan et al. suggest that zero-shot learning methods can help
in the emotion recognition from images, which is becoming
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a more difficult task due to the developments in psychology
that make the basic emotion categories more fine-grained [21].
The authors use a pre-trained DeepSentiBank model to extract
the adjective-noun pair (ANP), which will be used as affective
features that will bridge the gap between visual features and
semantic labels. They extract visual features via a deep CNN
and semantic features via a Word2Vec model. Both features
are embedded into the same space as ANP features with a
fully connected layer. At this point, this methodology looks
quite similar to the cross-modal retrieval problem, except
the fact that the learning methods are different [12], [14]-
[17]. Unlike retrieval solutions, Zhan et al. do not incorporate
pairwise ranking loss. Instead, they align the semantic features
to both visual and ANP features via squared error function.
In addition, the embedded space is defined by the affective
ANP features. To preserve the affective embedding structure,
authors use adversarial learning to make sure that embedded
visual features preserve the structure established by ANP
features. With the finite set of classes, they pre-compute the
embedded vectors for all labels and find the nearest neighbor
for classification. The overall architecture of this framework
is depicted in Figure 8.

Zhu et al. propose a Generalized Zero-Shot Learning
method that is agnostic to both unseen images and unseen
semantic data during training [22]. They list 2 challenges in
GZSL: visual2semantic gap and semantic2visual gap. Visual
features, such as the final layers of deep networks are high-
dimensional and don’t have good semantic representation. On
the other hand, semantic features are not visually meaningful
and contain noisy components. The authors propose three
concepts to improve GZSL. The first concept is visually
semantic embedding. They take the high-dimensional visual
features and break them down into some arbitrary number of
parts using a multi-attention model. The obtained part vectors
are then modeled as the Gaussian Mixture Models, where
each mixture component of one part vector represents the
probability of that part to be of some particular type. This



embedding can be visualized as a 2-dimensional matrix, where
rows represent the parts, columns represent the types, and
each entry represents the probability of part at this row to
be the type of this column. The second concept is 3-Node
Graphical Model, where they establish the 3-way connection
(X &Y, X & SY < S) where X represents the input
image, Y represents its label, and S represents the semantics
of that label Y, given that semantic information and labels
have a one-to-one mapping. This is quite different from the
traditional relationship in zero-shot learning (X <> S <> Y).
They explain this by the fact that semantic information is
not fully visual, visual information is not fully semantic, and
class labels are not fully captured neither by visual features
nor by semantic features. They also introduce a Visual Oracle
Supervision, which is a ground truth matrix of part-types for
each image. This is the alternative to the regular semantic
oracle, where the semantic attributes (not to confuse with
labels) were used for supervision. Such kind of supervision
has much less noise than the regular semantic information and
has discriminative capabilities during training. They wanted to
see how the reduction of semantic noise affects performance.

D. Discussion

The described literature demonstrate that there are many
ways to incorporate embedding concepts into computer vision
frameworks. The ability to encode text via word embedding
models and recurrent neural networks made it possible for
researchers to come up with a new application for visual
features extracted from deep CNN models, which is known as
cross-modal retrieval. By embedding visual and text features
into a shared vector space, they were able to leverage the
alignment capacity of pairwise ranking loss to build structured
embedding space and learn embedding functions that provide
low-dimensional representations for high-dimensional visual
data. This in turn makes it possible to accurately retrieve
text from visual data for video/image captioning [14]-[17] or
food recipe retrieval [12]. This is not to mention that a well
structured embedding space could be a significant step towards
unsupervised captioning [14], as well as captioning in different
languages by making it language invariant [17].

The continuous nature of embedded features also makes
them suitable for clustering, which is actively used in segmen-
tation problems. We discovered how learning good embedding
functions for video frames makes it convenient to segment
untrimmed videos and label each segment with the most likely
action class in an unsupervised fashion [18]. Some frameworks
actively use pixel-level embeddings to compute the similarities
and distances between each pair of pixels in the images to
further use them as the decision criteria for including them
into the segments [19], [20]. For instance, Li et al. describe
a complex Video Object Segmentation framework whose core
component is the similarity scores between embeddings [19].

In zero-shot learning scenario, embedded features can ef-
fectively bridge the gap between visual features and semantic
labels [21], [22]. Zhan et al. define the structure of the
embedding space with affective features that play signifi-
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cant role in emotion recognition [21]. The overall structure
of their framework is somewhat similar to the cross-modal
retrieval frameworks, though the learning process is quite
different. Zhu et al. showed that embedding visual data into
more compact embedding space that is also visually semantic
is quite beneficial [22]. We would want to highlight one
observation that the authors made. They found that using
regular semantic attributes (e.g., words) can be quite noisy
and bring unnecessary information. Their experiments, where
they substituted semantic oracle with visually semantic oracle
in their model and other GZSL models, showed that this
method of reducing semantic noise can significantly improve
the performance. This is a very interesting observation, which
proves that some semantic attributes are indeed noisy, while
the latent visually semantic features do not provide any extra
information.

IV. CONCLUSION

In this survey paper, we summarized and discussed recent
works in graph embedding, as well as the frameworks that
use embedding in different areas of computer vision. Those
frameworks demonstrate the variety and flexibility of embed-
ding application.

For graph embedding, we explored several domains. We first
discussed graph embedding approaches for recommendation
systems. For general item recommendation, we examined the
Semi-Parametric Embedding algorithm [2], and for drug rec-
ommendation we examined HS2Vec [3]. We then introduced
the knowledge graph domain and the WWV-KG algorithm
[4]. We discussed potential future work in which the WWV-
KG and the HS2Vec algorithms could be combined to create
a drug-discovery knowledge graph. Next, we shifted our
focus to the dynamic graph algorithms tNodeEmbed [6] and
DynGAN [7]. We observed their similarities, differences, and
how they could be further explored in future research. Lastly,
we observed how each graph embedding algorithm relies upon
proximity preservation, which led us into a discussion of our
final graph embedding algorithm, NECS [5].

For embedding in computer vision, we discussed the current
frameworks that employ embeddings for cross-modal retrieval,
video segmentation, object segmentation, and zero-shot learn-
ing. We observed how they build embedding spaces, learn
low-dimensional visual data representations, and cluster the
frames and pixels by leveraging the similarities and distances
between embedded vectors. It is also worth to mention that
many of those frameworks make significant steps towards
semi-supervised and unsupervised learning [14]-[16], [18],
[19], [21], [22].

Embedding is a powerful tool for dealing with unstructured
data in many domains. There are a myriad of ways to utilize
it, and this paper has provided several of them. Although this
survey is not exhaustive, it is our hope that it will serve as
a guide for researchers attempting to navigate the embedding
literature.



[1]

[2]

[4]

[5]

[6]
[7]

[8]
[9]
(10]

(11]

[12]

[21]

REFERENCES

W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” arXiv preprint arXiv:1709.05584,
2017.

P. Hu, R. Du, Y. Hu, and N. Li, “Du., r.: Hybrid item-item recommen-
dation via semi-parametric embedding,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI,
pp. 10-16, 2019.

C. Ruan, J. Ma, Y. Wang, Y. Zhang, and Y. Yang, “Discovering
regularities from traditional chinese medicine prescriptions via bipartite
embedding model,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence (IJCAI-19), pp. 3346-3352,
International Joint Conferences on Artificial Intelligence, 2019.

N. Veira, B. Keng, K. Padmanabhan, and A. Veneris, “Unsupervised em-
bedding enhancements of knowledge graphs using textual associations,”
in Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 5218-5225, AAAI Press, 2019.

Y. Li, Y. Wang, T. Zhang, J. Zhang, and Y. Chang, “Learning network
embedding with community structural information,” in Proceedings
of the 28th International Joint Conference on Artificial Intelligence,
pp- 29372943, AAAI Press, 2019.

U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal
graphs,” arXiv preprint arXiv:1903.08889, 2019.

A. Maheshwari, A. Goyal, M. K. Hanawal, and G. Ramakrishnan, “Dyn-
gan: Generative adversarial networks for dynamic network embedding,”
2019.

A. Chirkina and B. Rankov, “A recommender system for private bank-
ing,” 08 2018.

C. Jinyin, X. Xu, W. Yangyang, and H. Zheng, “Gc-lstm: Graph
convolution embedded Istm for dynamic link prediction,” 12 2018.

A. Singhal, “Introducing the knowledge graph: Things not strings.,”
2012.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Advances in Neural Information Processing Systems, vol. 3, 06 2014.
H. Wang, D. Sahoo, C. Liu, E.-p. Lim, and S. C. Hoi, “Learning cross-
modal embeddings with adversarial networks for cooking recipes and
C. Zhan, D. She, S. Zhao, M.-M. Cheng, and J. Yang, “Zero-shot
emotion recognition via affective structural embedding,” in Proceedings

12

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(22]

food images,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 11572—-11581, 2019.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in neural information processing systems, pp. 3111-
3119, 2013.

I. Laina, C. Rupprecht, and N. Navab, “Towards unsupervised image
captioning with shared multimodal embeddings,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 7414-7424,
2019.

A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic,
“Howto100m: Learning a text-video embedding by watching hundred
million narrated video clips,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2630-2640, 2019.

M. Wray, D. Larlus, G. Csurka, and D. Damen, “Fine-grained action
retrieval through multiple parts-of-speech embeddings,” in Proceedings
of the IEEE International Conference on Computer Vision, pp. 450—459,
2019.

J. Wehrmann, D. M. Souza, M. A. Lopes, and R. C. Barros, “Language-
agnostic visual-semantic embeddings,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 5804-5813, 2019.
A. Kukleva, H. Kuehne, F. Sener, and J. Gall, “Unsupervised learning
of action classes with continuous temporal embedding,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 12066-12074, 2019.

S. Li, B. Seybold, A. Vorobyov, A. Fathi, Q. Huang, and C.-C.
Jay Kuo, “Instance embedding transfer to unsupervised video object
segmentation,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Z. Tian, M. Shu, P. Lyu, R. Li, C. Zhou, X. Shen, and J. Jia, “Learning
shape-aware embedding for scene text detection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4234-4243, 2019.

of the IEEE International Conference on Computer Vision, pp. 1151—
1160, 2019.

P. Zhu, H. Wang, and V. Saligrama, “Generalized zero-shot recognition
based on visually semantic embedding,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2995—
3003, 2019.



